knockdown suppresses the phenotype of house dust mite-induced allergic asthma in mice and cells

Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol : Off J Canadian Soc Allergy Clin Immunol. 2018;14(Suppl 2):49. https://doi.org/10.1186/s13223-018-0278-1.

Article  CAS  Google Scholar 

Esmaeilzadeh A, Tahmasebi S, Athari SS. Chimeric antigen receptor -T cell therapy: applications and challenges in treatment of allergy and asthma. Biomed Pharmacother Biomed Pharmacotherapie. 2020;123:109685. https://doi.org/10.1016/j.biopha.2019.109685.

Article  CAS  Google Scholar 

Akar-Ghibril N, Casale T, Custovic A, Phipatanakul W. Allergic endotypes and phenotypes of asthma. J Allergy Clin Immunol Pract. 2020;8(2):429–40. https://doi.org/10.1016/j.jaip.2019.11.008.

Article  PubMed  PubMed Central  Google Scholar 

Maciag MC, Phipatanakul W. Update on indoor allergens and their impact on pediatric asthma. Ann Allergy Asthma Immunol : Off Publication American College Allergy Asthma Immunol. 2022;128(6):652–8. https://doi.org/10.1016/j.anai.2022.02.009.

Article  CAS  Google Scholar 

Huang HJ, Resch-Marat Y, Casset A, Weghofer M, Zieglmayer P, Zieglmayer R, et al. IgE recognition of the house dust mite allergen Der p 37 is associated with asthma. J Allergy Clin Immunol. 2022;149(3):1031–43. https://doi.org/10.1016/j.jaci.2021.07.040.

Article  CAS  PubMed  Google Scholar 

Rijavec M, Krumpestar T, Škrgat S, Kern I, Korošec P. T2-high asthma, classified by sputum mRNA Expression of IL4, IL5, and IL13, is characterized by eosinophilia and severe phenotype. Life (Basel, Switzerland). 2021;11(2). https://doi.org/10.3390/life11020092.

Nakagome K, Nagata M. The Possible Roles of IL-4/IL-13 in the Development of Eosinophil-Predominant Severe Asthma. Biomolecules. 2024;14(5). https://doi.org/10.3390/biom14050546

Li N, Liu S, Zhang Y, Yu L, Hu Y, Wu T, et al. Transcriptional activation of matricellular protein spondin2 (SPON2) by BRG1 in vascular endothelial cells promotes macrophage chemotaxis. Front In Cell Dev Biol. 2020;8:794. https://doi.org/10.3389/fcell.2020.00794.

Article  Google Scholar 

Liu YS, Wang LF, Cheng XS, Huo YN, Ouyang XM, Liang LY, et al. The pattern-recognition molecule mindin binds integrin Mac-1 to promote macrophage phagocytosis via Syk activation and NF-κB p65 translocation. J Cell Mol Med. 2019;23(5):3402–16. https://doi.org/10.1111/jcmm.14236.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang YL, Li Q, Yang XM, Fang F, Li J, Wang YH, et al. SPON2 Promotes M1-like Macrophage Recruitment and Inhibits Hepatocellular Carcinoma Metastasis by Distinct Integrin-Rho GTPase-Hippo Pathways. Can Res. 2018;78(9):2305–17. https://doi.org/10.1158/0008-5472.Can-17-2867.

Article  CAS  Google Scholar 

Tang J, Huang Q, Li X, Gu S. Comprehensive analysis of the oncogenic and immunological role of SPON2 in human tumors. Medicine. 2023;102(37):e35122. https://doi.org/10.1097/md.0000000000035122.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang H, Guo W, Huang K, Jiang H, Zhang R, Hu H, et al. Screening of radiotracer for diagnosis of colorectal cancer liver metastasis based on MACC1-SPON2. Abdom Radiol (New York). 2021;46(7):3227–37. https://doi.org/10.1007/s00261-021-03015-w.

Article  Google Scholar 

Becker D, Weikard R, Schulze C, Wohlsein P, Kühn C. A 50-kb deletion disrupting the RSPO2 gene is associated with tetradysmelia in Holstein Friesian cattle. Genet Sel Evol : GSE. 2020;52(1):68. https://doi.org/10.1186/s12711-020-00586-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Q, Wang XQ, Wang J, Cui SJ, Lou XM, Yan B, et al. Upregulation of spondin-2 predicts poor survival of colorectal carcinoma patients. Oncotarget. 2015;6(17):15095–110. https://doi.org/10.18632/oncotarget.3822.

Article  PubMed  PubMed Central  Google Scholar 

Zhang J, Liu G, Liu Y, Yang P, Xie J, Wei X. The biological functions and related signaling pathways of SPON2. Front Oncol. 2023;13:1323744. https://doi.org/10.3389/fonc.2023.1323744.

Article  CAS  PubMed  Google Scholar 

Ye M, Liu H, Li H, Liu Q, Zhou Z, Wang T, et al. Long-Term Exposure to Sulfur Dioxide Before Sensitization Decreased the Production of Specific IgE in HDM-Sensitized Allergic Rhinitis Mice. J Inflamm Res. 2022;15:2477–90. https://doi.org/10.2147/jir.S352397.

Article  PubMed  PubMed Central  Google Scholar 

Deng S, Hu Y, Zhou J, Wang Y, Wang Y, Li S, et al. TLR4 mediates alveolar bone resorption in experimental peri-implantitis through regulation of CD45(+) cell infiltration, RANKL/OPG ratio, and inflammatory cytokine production. J Periodontol. 2020;91(5):671–82. https://doi.org/10.1002/jper.18-0748.

Article  CAS  PubMed  Google Scholar 

McDermaid A, Monier B, Zhao J, Liu B, Ma Q. Interpretation of differential gene expression results of RNA-seq data: review and integration. Brief Bioinform. 2019;20(6):2044–54. https://doi.org/10.1093/bib/bby067.

Article  CAS  PubMed  Google Scholar 

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Cambridge (Mass)). 2021;2(3):100141. https://doi.org/10.1016/j.xinn.2021.100141

Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape stringapp: network analysis and visualization of proteomics data. J Proteome Res. 2019;18(2):623–32. https://doi.org/10.1021/acs.jproteome.8b00702.

Article  CAS  PubMed  Google Scholar 

Chan TK, Loh XY, Peh HY, Tan WNF, Tan WSD, Li N, et al. House dust mite-induced asthma causes oxidative damage and DNA double-strand breaks in the lungs. J Allergy Clin Immunol. 2016;138(1):84-96.e1. https://doi.org/10.1016/j.jaci.2016.02.017.

Article  CAS  PubMed  Google Scholar 

Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O’Mahony L, et al. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med. 2022;85:100995. https://doi.org/10.1016/j.mam.2021.100995.

Article  CAS  PubMed  Google Scholar 

Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, et al. Airway remodeling in asthma. Front Med. 2020;7:191. https://doi.org/10.3389/fmed.2020.00191.

Article  Google Scholar 

Feinstein Y, Klar A. The neuronal class 2 TSR proteins F-spondin and Mindin: a small family with divergent biological activities. Int J Biochem Cell Biol. 2004;36(6):975–80. https://doi.org/10.1016/j.biocel.2004.01.002.

Article  CAS  PubMed  Google Scholar 

Li Z, Garantziotis S, Jia W, Potts EN, Lalani S, Liu Z, et al. The extracellular matrix protein mindin regulates trafficking of murine eosinophils into the airspace. J Leukoc Biol. 2009;85(1):124–31. https://doi.org/10.1189/jlb.0208135.

Article  CAS  PubMed  Google Scholar 

Wang H, Zhang M, Lu W, Yuan C. Prostate cancer cell‑derived spondin 2 boosts osteogenic factor levels in osteoblasts via the PI3K/AKT/mTOR pathway. Oncology Reports. 2023;49(1). https://doi.org/10.3892/or.2022.8460.

Lu H, Feng Y, Hu Y, Guo Y, Liu Y, Mao Q, et al. Spondin 2 promotes the proliferation, migration and invasion of gastric cancer cells. J Cell Mol Med. 2020;24(1):98–113. https://doi.org/10.1111/jcmm.14618.

Article  CAS  PubMed  Google Scholar 

Ni H, Ni T, Feng J, Bian T, Liu Y, Zhang J. Spondin-2 is a novel diagnostic biomarker for laryngeal squamous cell carcinoma. Pathol Res Pract. 2019;215(2):286–91. https://doi.org/10.1016/j.prp.2018.11.017.

Article  CAS  PubMed  Google Scholar 

Huang C, Ou R, Chen X, Zhang Y, Li J, Liang Y, et al. Tumor cell-derived SPON2 promotes M2-polarized tumor-associated macrophage infiltration and cancer progression by activating PYK2 in CRC. J Exp Clin Cancer Res : CR. 2021;40(1):304. https://doi.org/10.1186/s13046-021-02108-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang M, Wang Y, Wang Z, Qin Q, Zhang H, Liu S, et al. miR-134-5p inhibits osteoclastogenesis through a novel miR-134-5p/Itgb1/MAPK pathway. J Biol Chem. 2022;298(7):102116. https://doi.org/10.1016/j.jbc.2022.102116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ardura JA, Álvarez-Carrión L, Gutiérrez-Rojas I, Friedman PA, Gortázar AR, Alonso V. MINDIN secretion by prostate tumors induces premetastatic changes in bone via β-catenin. Endocr Relat Cancer. 2020;27(7):441–56. https://doi.org/10.1530/erc-20-0116.

Article  CAS  PubMed 

Comments (0)

No login
gif