Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol : Off J Canadian Soc Allergy Clin Immunol. 2018;14(Suppl 2):49. https://doi.org/10.1186/s13223-018-0278-1.
Esmaeilzadeh A, Tahmasebi S, Athari SS. Chimeric antigen receptor -T cell therapy: applications and challenges in treatment of allergy and asthma. Biomed Pharmacother Biomed Pharmacotherapie. 2020;123:109685. https://doi.org/10.1016/j.biopha.2019.109685.
Akar-Ghibril N, Casale T, Custovic A, Phipatanakul W. Allergic endotypes and phenotypes of asthma. J Allergy Clin Immunol Pract. 2020;8(2):429–40. https://doi.org/10.1016/j.jaip.2019.11.008.
Article PubMed PubMed Central Google Scholar
Maciag MC, Phipatanakul W. Update on indoor allergens and their impact on pediatric asthma. Ann Allergy Asthma Immunol : Off Publication American College Allergy Asthma Immunol. 2022;128(6):652–8. https://doi.org/10.1016/j.anai.2022.02.009.
Huang HJ, Resch-Marat Y, Casset A, Weghofer M, Zieglmayer P, Zieglmayer R, et al. IgE recognition of the house dust mite allergen Der p 37 is associated with asthma. J Allergy Clin Immunol. 2022;149(3):1031–43. https://doi.org/10.1016/j.jaci.2021.07.040.
Article CAS PubMed Google Scholar
Rijavec M, Krumpestar T, Škrgat S, Kern I, Korošec P. T2-high asthma, classified by sputum mRNA Expression of IL4, IL5, and IL13, is characterized by eosinophilia and severe phenotype. Life (Basel, Switzerland). 2021;11(2). https://doi.org/10.3390/life11020092.
Nakagome K, Nagata M. The Possible Roles of IL-4/IL-13 in the Development of Eosinophil-Predominant Severe Asthma. Biomolecules. 2024;14(5). https://doi.org/10.3390/biom14050546
Li N, Liu S, Zhang Y, Yu L, Hu Y, Wu T, et al. Transcriptional activation of matricellular protein spondin2 (SPON2) by BRG1 in vascular endothelial cells promotes macrophage chemotaxis. Front In Cell Dev Biol. 2020;8:794. https://doi.org/10.3389/fcell.2020.00794.
Liu YS, Wang LF, Cheng XS, Huo YN, Ouyang XM, Liang LY, et al. The pattern-recognition molecule mindin binds integrin Mac-1 to promote macrophage phagocytosis via Syk activation and NF-κB p65 translocation. J Cell Mol Med. 2019;23(5):3402–16. https://doi.org/10.1111/jcmm.14236.
Article CAS PubMed PubMed Central Google Scholar
Zhang YL, Li Q, Yang XM, Fang F, Li J, Wang YH, et al. SPON2 Promotes M1-like Macrophage Recruitment and Inhibits Hepatocellular Carcinoma Metastasis by Distinct Integrin-Rho GTPase-Hippo Pathways. Can Res. 2018;78(9):2305–17. https://doi.org/10.1158/0008-5472.Can-17-2867.
Tang J, Huang Q, Li X, Gu S. Comprehensive analysis of the oncogenic and immunological role of SPON2 in human tumors. Medicine. 2023;102(37):e35122. https://doi.org/10.1097/md.0000000000035122.
Article CAS PubMed PubMed Central Google Scholar
Jiang H, Guo W, Huang K, Jiang H, Zhang R, Hu H, et al. Screening of radiotracer for diagnosis of colorectal cancer liver metastasis based on MACC1-SPON2. Abdom Radiol (New York). 2021;46(7):3227–37. https://doi.org/10.1007/s00261-021-03015-w.
Becker D, Weikard R, Schulze C, Wohlsein P, Kühn C. A 50-kb deletion disrupting the RSPO2 gene is associated with tetradysmelia in Holstein Friesian cattle. Genet Sel Evol : GSE. 2020;52(1):68. https://doi.org/10.1186/s12711-020-00586-y.
Article CAS PubMed PubMed Central Google Scholar
Zhang Q, Wang XQ, Wang J, Cui SJ, Lou XM, Yan B, et al. Upregulation of spondin-2 predicts poor survival of colorectal carcinoma patients. Oncotarget. 2015;6(17):15095–110. https://doi.org/10.18632/oncotarget.3822.
Article PubMed PubMed Central Google Scholar
Zhang J, Liu G, Liu Y, Yang P, Xie J, Wei X. The biological functions and related signaling pathways of SPON2. Front Oncol. 2023;13:1323744. https://doi.org/10.3389/fonc.2023.1323744.
Article CAS PubMed Google Scholar
Ye M, Liu H, Li H, Liu Q, Zhou Z, Wang T, et al. Long-Term Exposure to Sulfur Dioxide Before Sensitization Decreased the Production of Specific IgE in HDM-Sensitized Allergic Rhinitis Mice. J Inflamm Res. 2022;15:2477–90. https://doi.org/10.2147/jir.S352397.
Article PubMed PubMed Central Google Scholar
Deng S, Hu Y, Zhou J, Wang Y, Wang Y, Li S, et al. TLR4 mediates alveolar bone resorption in experimental peri-implantitis through regulation of CD45(+) cell infiltration, RANKL/OPG ratio, and inflammatory cytokine production. J Periodontol. 2020;91(5):671–82. https://doi.org/10.1002/jper.18-0748.
Article CAS PubMed Google Scholar
McDermaid A, Monier B, Zhao J, Liu B, Ma Q. Interpretation of differential gene expression results of RNA-seq data: review and integration. Brief Bioinform. 2019;20(6):2044–54. https://doi.org/10.1093/bib/bby067.
Article CAS PubMed Google Scholar
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Cambridge (Mass)). 2021;2(3):100141. https://doi.org/10.1016/j.xinn.2021.100141
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape stringapp: network analysis and visualization of proteomics data. J Proteome Res. 2019;18(2):623–32. https://doi.org/10.1021/acs.jproteome.8b00702.
Article CAS PubMed Google Scholar
Chan TK, Loh XY, Peh HY, Tan WNF, Tan WSD, Li N, et al. House dust mite-induced asthma causes oxidative damage and DNA double-strand breaks in the lungs. J Allergy Clin Immunol. 2016;138(1):84-96.e1. https://doi.org/10.1016/j.jaci.2016.02.017.
Article CAS PubMed Google Scholar
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O’Mahony L, et al. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med. 2022;85:100995. https://doi.org/10.1016/j.mam.2021.100995.
Article CAS PubMed Google Scholar
Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, et al. Airway remodeling in asthma. Front Med. 2020;7:191. https://doi.org/10.3389/fmed.2020.00191.
Feinstein Y, Klar A. The neuronal class 2 TSR proteins F-spondin and Mindin: a small family with divergent biological activities. Int J Biochem Cell Biol. 2004;36(6):975–80. https://doi.org/10.1016/j.biocel.2004.01.002.
Article CAS PubMed Google Scholar
Li Z, Garantziotis S, Jia W, Potts EN, Lalani S, Liu Z, et al. The extracellular matrix protein mindin regulates trafficking of murine eosinophils into the airspace. J Leukoc Biol. 2009;85(1):124–31. https://doi.org/10.1189/jlb.0208135.
Article CAS PubMed Google Scholar
Wang H, Zhang M, Lu W, Yuan C. Prostate cancer cell‑derived spondin 2 boosts osteogenic factor levels in osteoblasts via the PI3K/AKT/mTOR pathway. Oncology Reports. 2023;49(1). https://doi.org/10.3892/or.2022.8460.
Lu H, Feng Y, Hu Y, Guo Y, Liu Y, Mao Q, et al. Spondin 2 promotes the proliferation, migration and invasion of gastric cancer cells. J Cell Mol Med. 2020;24(1):98–113. https://doi.org/10.1111/jcmm.14618.
Article CAS PubMed Google Scholar
Ni H, Ni T, Feng J, Bian T, Liu Y, Zhang J. Spondin-2 is a novel diagnostic biomarker for laryngeal squamous cell carcinoma. Pathol Res Pract. 2019;215(2):286–91. https://doi.org/10.1016/j.prp.2018.11.017.
Article CAS PubMed Google Scholar
Huang C, Ou R, Chen X, Zhang Y, Li J, Liang Y, et al. Tumor cell-derived SPON2 promotes M2-polarized tumor-associated macrophage infiltration and cancer progression by activating PYK2 in CRC. J Exp Clin Cancer Res : CR. 2021;40(1):304. https://doi.org/10.1186/s13046-021-02108-0.
Article CAS PubMed PubMed Central Google Scholar
Huang M, Wang Y, Wang Z, Qin Q, Zhang H, Liu S, et al. miR-134-5p inhibits osteoclastogenesis through a novel miR-134-5p/Itgb1/MAPK pathway. J Biol Chem. 2022;298(7):102116. https://doi.org/10.1016/j.jbc.2022.102116.
Article CAS PubMed PubMed Central Google Scholar
Ardura JA, Álvarez-Carrión L, Gutiérrez-Rojas I, Friedman PA, Gortázar AR, Alonso V. MINDIN secretion by prostate tumors induces premetastatic changes in bone via β-catenin. Endocr Relat Cancer. 2020;27(7):441–56. https://doi.org/10.1530/erc-20-0116.
Comments (0)