The role of CD40L-expressing CXCR5CD8 follicular cytotoxic T cells in chronic lymphocytic leukemia

Kipps TJ, et al. Chronic lymphocytic leukaemia. Nat Rev Dis Primers. 2017;3:16096.

PubMed  PubMed Central  Google Scholar 

Burger JA, Gandhi V. The lymphatic tissue microenvironments in chronic lymphocytic leukemia: in vitro models and the significance of CD40-CD154 interactions. Blood. 2009;114(12):2560–1 (author reply 2561–2).

CAS  PubMed  PubMed Central  Google Scholar 

Nabhan C, et al. The impact of race, ethnicity, age and sex on clinical outcome in chronic lymphocytic leukemia: a comprehensive surveillance, epidemiology, and end results analysis in the modern era. Leuk Lymphoma. 2014;55(12):2778–84.

PubMed  Google Scholar 

Roessner PM, Seiffert M. T-cells in chronic lymphocytic leukemia: guardians or drivers of disease? Leukemia. 2020;34(8):2012–24.

CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez-Rodriguez AP, et al. Prognostic significance of CD8 and CD4 T cells in chronic lymphocytic leukemia. Leuk Lymphoma. 2010;51(10):1829–36.

CAS  PubMed  Google Scholar 

Basu R, et al. Cytotoxic t cells use mechanical force to potentiate target cell killing. Cell. 2016;165(1):100–10.

CAS  PubMed  PubMed Central  Google Scholar 

Quigley MF, et al. CXCR5+ CCR7- CD8 T cells are early effector memory cells that infiltrate tonsil B cell follicles. Eur J Immunol. 2007;37(12):3352–62.

CAS  PubMed  Google Scholar 

Ferrando-Martinez S, et al. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest. 2018;128(5):2089–103.

PubMed  PubMed Central  Google Scholar 

Valentine KM, Hoyer KK. CXCR5+ CD8 T cells: protective or pathogenic? Front Immunol. 2019;10:1322.

CAS  PubMed  PubMed Central  Google Scholar 

E Jifu, et al. CD8(+)CXCR5(+) T cells in tumor-draining lymph nodes are highly activated and predict better prognosis in colorectal cancer. Hum Immunol. 2018;79(6):446–52.

Bai M, et al. CXCR5(+) CD8(+) T cells potently infiltrate pancreatic tumors and present high functionality. Exp Cell Res. 2017;361(1):39–45.

CAS  PubMed  Google Scholar 

Shen J, et al. A subset of CXCR5(+)CD8(+) T cells in the germinal centers from human tonsils and lymph nodes help B cells produce immunoglobulins. Front Immunol. 2018;9: 2287.

PubMed  PubMed Central  Google Scholar 

Xing J, et al. Inverse relationship between CD40L expression and cytolytic molecule expression by CD8(+)CXCR5(+) T follicular cytotoxic cells in colorectal cancer. Exp Cell Res. 2020;389(1): 111892.

CAS  PubMed  Google Scholar 

Luckheeram RV, et al. CD4(+)T cells: differentiation and functions. Clin Dev Immunol. 2012;2012:925135.

PubMed  PubMed Central  Google Scholar 

Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity. 2003;19(5):641–4.

CAS  PubMed  Google Scholar 

Meng X, Yang B, Suen WC. Prospects for modulating the CD40/CD40L pathway in the therapy of the hyper-IgM syndrome. Innate Immun. 2018;24(1):4–10.

CAS  PubMed  Google Scholar 

Quezada SA, et al. CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol. 2004;22:307–28.

CAS  PubMed  Google Scholar 

Deenick EK, Ma CS. The regulation and role of T follicular helper cells in immunity. Immunology. 2011;134(4):361–7.

CAS  PubMed  PubMed Central  Google Scholar 

Hong GU, et al. IgE production in CD40/CD40L cross-talk of B and mast cells and mediator release via TGase 2 in mouse allergic asthma. Cell Signal. 2013;25(6):1514–25.

CAS  PubMed  Google Scholar 

Hong GU, et al. IgE and IgA produced by OX40-OX40L or CD40-CD40L interaction in B cells-mast cells re-activate FcepsilonRI or FcalphaRI on mast cells in mouse allergic asthma. Eur J Pharmacol. 2015;754:199–210.

CAS  PubMed  Google Scholar 

He R, et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537(7620):412–28.

CAS  PubMed  Google Scholar 

Leong YA, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17(10):1187–96.

CAS  PubMed  Google Scholar 

Le KS, et al. CXCR5 and ICOS expression identifies a CD8 T-cell subset with TFH features in Hodgkin lymphomas. Blood Adv. 2018;2(15):1889–900.

CAS  PubMed  PubMed Central  Google Scholar 

Linterman MA, et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J Exp Med. 2010;207(2):353–63.

CAS  PubMed  PubMed Central  Google Scholar 

Duan L, et al. Follicular dendritic cells restrict interleukin-4 availability in germinal centers and foster memory B cell generation. Immunity. 2021;54(10):2256-2272e6.

CAS  PubMed  PubMed Central  Google Scholar 

Zhou Y, et al. CXCR5(+) CD8 T cells displayed higher activation potential despite high PD-1 expression, in tumor-involved lymph nodes from patients with thyroid cancer. Int Immunopharmacol. 2018;62:114–9.

CAS  PubMed  Google Scholar 

Chu F, et al. CXCR5(+)CD8(+) T cells are a distinct functional subset with an antitumor activity. Leukemia. 2019;33(11):2640–53.

CAS  PubMed  PubMed Central  Google Scholar 

Tang J, et al. CXCR5(+)CD8(+) T cells present elevated capacity in mediating cytotoxicity toward autologous tumor cells through interleukin 10 in diffuse large B-cell lymphoma. Int Immunopharmacol. 2017;50:146–51.

CAS  PubMed  Google Scholar 

Gelmez MY, et al. High expression of OX-40, ICOS, and low expression PD-L1 of follicular helper and follicular cytotoxic T cells in chronic lymphocytic leukemia. J Hematop. 2022;15(3):117–29.

Google Scholar 

Turner CN, Mullins GN, Hoyer KK. CXCR5(+)CD8 T cells: Potential immunotherapy targets or drivers of immune-mediated adverse events? Front Med (Lausanne). 2022;9:1034764.

PubMed  Google Scholar 

Brummelman J, et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8(+) T cells infiltrating human tumors. J Exp Med. 2018;215(10):2520–35.

CAS  PubMed  PubMed Central  Google Scholar 

Valentine KM, et al. CD8 follicular t cells localize throughout the follicle during germinal center reactions and maintain cytolytic and helper properties. J Autoimmun. 2021;123: 102690.

CAS  PubMed  PubMed Central  Google Scholar 

Gelmez MY, et al. Investigation of AID, Dicer, and Drosha expressions in patients with chronic lymphocytic leukemia. Immunol Invest. 2017;46(5):433–46.

CAS  PubMed  Google Scholar 

Gelmez MY, et al. Analysis of activation-induced cytidine deaminase mRNA levels in patients with chronic lymphocytic leukemia with different cytogenetic status. Leuk Lymphoma. 2014;55(2):326–30.

CAS  PubMed  Google Scholar 

Kuchen S, et al. Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J Immunol. 2007;179(9):5886–96.

CAS  PubMed  Google Scholar 

Komlosi ZI, et al. Human CD40 ligand-expressing type 3 innate lymphoid cells induce IL-10-producing immature transitional regulatory B cells. J Allergy Clin Immunol. 2018;142(1):178-194e11.

CAS  PubMed  Google Scholar 

Hofland T, et al. Human CXCR5(+) PD-1(+) CD8 T cells in healthy individuals and patients with hematologic malignancies. Eur J Immunol. 2021;51(3):703–13.

CAS  PubMed  Google Scholar 

Cha Z, et al. Association of peripheral CD4+ CXCR5+ T cells with chronic lymphocytic leukemia. Tumour Biol. 2013;34(6):3579–85.

CAS  PubMed  Google Scholar 

Wu X, et al. Altered T follicular helper cell subsets and function in chronic lymphocytic leukemia. Front Oncol. 2021;11: 674492.

CAS  PubMed  PubM

Comments (0)

No login
gif