Yudhani RD, Pakha DN, Suyatmi S, Irham LM. Identifying pathogenic variants related to systemic lupus erythematosus by integrating genomic databases and a bioinformatic approach. Genomics Inform. 2023;21: e37. https://doi.org/10.5808/gi.23002.
Article PubMed PubMed Central Google Scholar
Nandakumar KS, Nündel K. Editorial: Systemic lupus erythematosus - predisposition factors, pathogenesis, diagnosis, treatment and disease models. Front Immunol. 2022;13:1118180. https://doi.org/10.3389/fimmu.2022.1118180.
Article PubMed PubMed Central Google Scholar
Arnaud L, Chasset F, Martin T. Immunopathogenesis of systemic lupus erythematosus: an update. Autoimmun Rev. 2024;23(10): 103648. https://doi.org/10.1016/j.autrev.2024.103648.
Article CAS PubMed Google Scholar
Tsokos GC. The immunology of systemic lupus erythematosus. Nat Immunol. 2024;25:1332–43. https://doi.org/10.1038/s41590-024-01898-7.
Article CAS PubMed Google Scholar
Tian J, Zhang D, Yao X, Huang Y, Lu Q. Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modelling study. Ann Rheum Dis. 2023;82:351–6. https://doi.org/10.1136/ard-2022-22303.
Siegel CH, Sammaritano LR. Systemic lupus erythematosus: a review. JAMA. 2024;331:1480–91. https://doi.org/10.1001/jama.2024.2315.
Article CAS PubMed Google Scholar
Hoi A, Igel T, Mok CC, Arnaud L. Systemic lupus erythematosus. Lancet. 2024;403:2326–38. https://doi.org/10.1016/S0140-6736(24)00398-2.
Article CAS PubMed Google Scholar
Fanouriakis A, Kostopoulou M, Andersen J, Aringer M, Arnaud L, Bae SC, et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann Rheum Dis. 2024;83:15–29. https://doi.org/10.1136/ard-2023-224762.
Article CAS PubMed Google Scholar
Zucchi D, Elefante E, Schilirò D, Signorini V, Trentin F, Bortoluzzi A, Tani C. One year in review 2022: systemic lupus erythematosus. Clin Exp Rheumatol. 2022;40(1):4–14. https://doi.org/10.55563/clinexprheumatol/nolysy.
Rajeev Kumar S, Sakthiswary R, Lokanathan Y. Potential therapeutic application and mechanism of action of stem cell-derived extracellular vesicles (EVs) in systemic lupus erythematosus (SLE). Int J Mol Sci. 2024;25:2444. https://doi.org/10.3390/ijms25042444.
Article CAS PubMed PubMed Central Google Scholar
Wong C, Stoilova I, Gazeau F, Herbeuval JP, Fourniols T. Mesenchymal stromal cell derived extracellular vesicles as a therapeutic tool: immune regulation, MSC priming, and applications to SLE. Front Immunol. 2024;15:1355845. https://doi.org/10.3389/fimmu.2024.1355845.
Article CAS PubMed PubMed Central Google Scholar
Samavati SF, Yarani R, Kiani S, HoseinKhani Z, Mehrabi M, Levitte S, Primavera R, Chetty S, Thakor AS, Mansouri K. Therapeutic potential of exosomes derived from mesenchymal stem cells for treatment of systemic lupus erythematosus. J Inflamm. 2024;21(1):20. https://doi.org/10.1186/s12950-024-00381-2.
Zhang B, Zhao M, Lu Q. Extracellular vesicles in rheumatoid arthritis and systemic lupus erythematosus: functions and applications. Front Immunol. 2021;11: 575712. https://doi.org/10.3389/fimmu.2020.575712.
Article CAS PubMed PubMed Central Google Scholar
Yang C, Sun J, Tian Y, Li H, Zhang L, Yang J, Wang J, Zhang J, Yan S, Xu D. Immunomodulatory effect of MSCs and MSCs-derived extracellular vesicles in systemic lupus erythematosus. Front Immunol. 2021;12: 714832. https://doi.org/10.3389/fimmu.2021.714832.
Article CAS PubMed PubMed Central Google Scholar
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical research ed). 2021;372:n71. https://doi.org/10.1136/bmj.n71.
Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43. https://doi.org/10.1186/1471-2288-14-43.
Article PubMed PubMed Central Google Scholar
Claßen L, Tykocinski LO, Wiedmann F, Birr C, Schiller P, Tucher C, Krienke S, Raab MS, Blank N, Lorenz HM, Schiller M. Extracellular vesicles mediate intercellular communication: transfer of functionally active microRNAs by microvesicles into phagocytes. Eur J Immunol. 2017;47:1535–49. https://doi.org/10.1002/eji.201646595.
Article CAS PubMed Google Scholar
Dou R, Zhang X, Xu X, Wang P, Yan B. Mesenchymal stem cell exosomal tsRNA-21109 alleviate systemic lupus erythematosus by inhibiting macrophage M1 polarization. Mol Immunol. 2021;139:106–14. https://doi.org/10.1016/j.molimm.2021.08.015.
Article CAS PubMed Google Scholar
Tu J, Zheng N, Mao C, Liu S, Zhang H, Sun L. UC-BSCs exosomes regulate Th17/Treg balance in patients with systemic lupus erythematosus via miR-19b/KLF13. Cells. 2022;11:4123. https://doi.org/10.3390/cells11244123.
Article CAS PubMed PubMed Central Google Scholar
Xie M, Li C, She Z, Wu F, Mao J, Hun M, Luo S, Wan W, Tian J, Wen C. Human umbilical cord mesenchymal stem cells derived extracellular vesicles regulate acquired immune response of lupus mouse in vitro. Sci Rep. 2022;12:13101. https://doi.org/10.1038/s41598-022-17331-8.
Article CAS PubMed PubMed Central Google Scholar
Zhao Y, Song W, Yuan Z, Li M, Wang G, Wang L, Liu Y, Diao B. Exosome derived from human umbilical cord mesenchymal cell exerts immunomodulatory effects on B cells from SLE patients. J Immunol Res. 2023. https://doi.org/10.1155/2023/3177584.
Article PubMed PubMed Central Google Scholar
Tan L, Zhao M, Wu H, Zhang Y, Tong X, Gao L, Zhou L, Lu Q, Zeng J. Downregulated serum exosomal miR-451a expression correlates with renal damage and its intercellular communication role in systemic lupus erythematosus. Front Immunol. 2021;12: 630112. https://doi.org/10.3389/fimmu.2021.630112.
Article CAS PubMed PubMed Central Google Scholar
Wei S, Zhang Z, Yan L, Mo Y, Qiu X, Mi X, Lai K. miR-20a overexpression in adipose-derived mesenchymal stem cells promotes therapeutic efficacy in murine lupus nephritis by regulating autophagy. Stem Cells Int. 2021;2021:3746335. https://doi.org/10.1155/2021/3746335.
Article CAS PubMed PubMed Central Google Scholar
Chen J, Zhou Q, Lu Y. Saponins from Panax notoginseng ameliorate steroid resistance in lupus nephritis through regulating lymphocyte-derived exosomes in mice. Front Pharmacol. 2022;13: 946392. https://doi.org/10.3389/fphar.2022.946392.
Article CAS PubMed PubMed Central Google Scholar
Li C, Wu F, Mao J, Wang Y, Zhu J, Hong K, Xie H, Zhou X, Tian J, Wen C. Mesenchymal stem cells-derived extracellular vesicles ameliorate lupus nephritis by regulating T and B cell responses. Stem Cell Res Ther. 2024;15:216. https://doi.org/10.1186/s13287-024-03834-w.
Article CAS PubMed PubMed Central Google Scholar
Ji J, Liang Q, He Q, Chen T, Feng G, Guo H, Wang Y, Xu Y, Chen P, Dong C, Zhao R, Yang J, Sha X, Cao H, Li J, Xia Y, Yang M, Gu Z. Overexpression of miR-20a-5p in mesenchymal stem cell derived-exosomes from systemic lupus erythematosus patients restored therapeutic effect and Treg immune regulation. Eur J Pharmacol. 2024;979: 176862. https://doi.org/10.1016/j.ejphar.2024.176862.
Article CAS PubMed Google Scholar
Zhang M, Johnson-Stephenson TK, Wang W, Wang Y, Li J, Li L, Zen K, Chen X, Zhu D. Mesenchymal stem cel
Comments (0)