Therapeutic potential of extracellular vesicles in systemic lupus erythematosus: a systematic review

Yudhani RD, Pakha DN, Suyatmi S, Irham LM. Identifying pathogenic variants related to systemic lupus erythematosus by integrating genomic databases and a bioinformatic approach. Genomics Inform. 2023;21: e37. https://doi.org/10.5808/gi.23002.

Article  PubMed  PubMed Central  Google Scholar 

Nandakumar KS, Nündel K. Editorial: Systemic lupus erythematosus - predisposition factors, pathogenesis, diagnosis, treatment and disease models. Front Immunol. 2022;13:1118180. https://doi.org/10.3389/fimmu.2022.1118180.

Article  PubMed  PubMed Central  Google Scholar 

Arnaud L, Chasset F, Martin T. Immunopathogenesis of systemic lupus erythematosus: an update. Autoimmun Rev. 2024;23(10): 103648. https://doi.org/10.1016/j.autrev.2024.103648.

Article  CAS  PubMed  Google Scholar 

Tsokos GC. The immunology of systemic lupus erythematosus. Nat Immunol. 2024;25:1332–43. https://doi.org/10.1038/s41590-024-01898-7.

Article  CAS  PubMed  Google Scholar 

Tian J, Zhang D, Yao X, Huang Y, Lu Q. Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modelling study. Ann Rheum Dis. 2023;82:351–6. https://doi.org/10.1136/ard-2022-22303.

Article  PubMed  Google Scholar 

Siegel CH, Sammaritano LR. Systemic lupus erythematosus: a review. JAMA. 2024;331:1480–91. https://doi.org/10.1001/jama.2024.2315.

Article  CAS  PubMed  Google Scholar 

Hoi A, Igel T, Mok CC, Arnaud L. Systemic lupus erythematosus. Lancet. 2024;403:2326–38. https://doi.org/10.1016/S0140-6736(24)00398-2.

Article  CAS  PubMed  Google Scholar 

Fanouriakis A, Kostopoulou M, Andersen J, Aringer M, Arnaud L, Bae SC, et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann Rheum Dis. 2024;83:15–29. https://doi.org/10.1136/ard-2023-224762.

Article  CAS  PubMed  Google Scholar 

Zucchi D, Elefante E, Schilirò D, Signorini V, Trentin F, Bortoluzzi A, Tani C. One year in review 2022: systemic lupus erythematosus. Clin Exp Rheumatol. 2022;40(1):4–14. https://doi.org/10.55563/clinexprheumatol/nolysy.

Article  PubMed  Google Scholar 

Rajeev Kumar S, Sakthiswary R, Lokanathan Y. Potential therapeutic application and mechanism of action of stem cell-derived extracellular vesicles (EVs) in systemic lupus erythematosus (SLE). Int J Mol Sci. 2024;25:2444. https://doi.org/10.3390/ijms25042444.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong C, Stoilova I, Gazeau F, Herbeuval JP, Fourniols T. Mesenchymal stromal cell derived extracellular vesicles as a therapeutic tool: immune regulation, MSC priming, and applications to SLE. Front Immunol. 2024;15:1355845. https://doi.org/10.3389/fimmu.2024.1355845.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samavati SF, Yarani R, Kiani S, HoseinKhani Z, Mehrabi M, Levitte S, Primavera R, Chetty S, Thakor AS, Mansouri K. Therapeutic potential of exosomes derived from mesenchymal stem cells for treatment of systemic lupus erythematosus. J Inflamm. 2024;21(1):20. https://doi.org/10.1186/s12950-024-00381-2.

Article  CAS  Google Scholar 

Zhang B, Zhao M, Lu Q. Extracellular vesicles in rheumatoid arthritis and systemic lupus erythematosus: functions and applications. Front Immunol. 2021;11: 575712. https://doi.org/10.3389/fimmu.2020.575712.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang C, Sun J, Tian Y, Li H, Zhang L, Yang J, Wang J, Zhang J, Yan S, Xu D. Immunomodulatory effect of MSCs and MSCs-derived extracellular vesicles in systemic lupus erythematosus. Front Immunol. 2021;12: 714832. https://doi.org/10.3389/fimmu.2021.714832.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical research ed). 2021;372:n71. https://doi.org/10.1136/bmj.n71.

Article  PubMed  Google Scholar 

Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43. https://doi.org/10.1186/1471-2288-14-43.

Article  PubMed  PubMed Central  Google Scholar 

Claßen L, Tykocinski LO, Wiedmann F, Birr C, Schiller P, Tucher C, Krienke S, Raab MS, Blank N, Lorenz HM, Schiller M. Extracellular vesicles mediate intercellular communication: transfer of functionally active microRNAs by microvesicles into phagocytes. Eur J Immunol. 2017;47:1535–49. https://doi.org/10.1002/eji.201646595.

Article  CAS  PubMed  Google Scholar 

Dou R, Zhang X, Xu X, Wang P, Yan B. Mesenchymal stem cell exosomal tsRNA-21109 alleviate systemic lupus erythematosus by inhibiting macrophage M1 polarization. Mol Immunol. 2021;139:106–14. https://doi.org/10.1016/j.molimm.2021.08.015.

Article  CAS  PubMed  Google Scholar 

Tu J, Zheng N, Mao C, Liu S, Zhang H, Sun L. UC-BSCs exosomes regulate Th17/Treg balance in patients with systemic lupus erythematosus via miR-19b/KLF13. Cells. 2022;11:4123. https://doi.org/10.3390/cells11244123.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie M, Li C, She Z, Wu F, Mao J, Hun M, Luo S, Wan W, Tian J, Wen C. Human umbilical cord mesenchymal stem cells derived extracellular vesicles regulate acquired immune response of lupus mouse in vitro. Sci Rep. 2022;12:13101. https://doi.org/10.1038/s41598-022-17331-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao Y, Song W, Yuan Z, Li M, Wang G, Wang L, Liu Y, Diao B. Exosome derived from human umbilical cord mesenchymal cell exerts immunomodulatory effects on B cells from SLE patients. J Immunol Res. 2023. https://doi.org/10.1155/2023/3177584.

Article  PubMed  PubMed Central  Google Scholar 

Tan L, Zhao M, Wu H, Zhang Y, Tong X, Gao L, Zhou L, Lu Q, Zeng J. Downregulated serum exosomal miR-451a expression correlates with renal damage and its intercellular communication role in systemic lupus erythematosus. Front Immunol. 2021;12: 630112. https://doi.org/10.3389/fimmu.2021.630112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei S, Zhang Z, Yan L, Mo Y, Qiu X, Mi X, Lai K. miR-20a overexpression in adipose-derived mesenchymal stem cells promotes therapeutic efficacy in murine lupus nephritis by regulating autophagy. Stem Cells Int. 2021;2021:3746335. https://doi.org/10.1155/2021/3746335.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Zhou Q, Lu Y. Saponins from Panax notoginseng ameliorate steroid resistance in lupus nephritis through regulating lymphocyte-derived exosomes in mice. Front Pharmacol. 2022;13: 946392. https://doi.org/10.3389/fphar.2022.946392.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li C, Wu F, Mao J, Wang Y, Zhu J, Hong K, Xie H, Zhou X, Tian J, Wen C. Mesenchymal stem cells-derived extracellular vesicles ameliorate lupus nephritis by regulating T and B cell responses. Stem Cell Res Ther. 2024;15:216. https://doi.org/10.1186/s13287-024-03834-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji J, Liang Q, He Q, Chen T, Feng G, Guo H, Wang Y, Xu Y, Chen P, Dong C, Zhao R, Yang J, Sha X, Cao H, Li J, Xia Y, Yang M, Gu Z. Overexpression of miR-20a-5p in mesenchymal stem cell derived-exosomes from systemic lupus erythematosus patients restored therapeutic effect and Treg immune regulation. Eur J Pharmacol. 2024;979: 176862. https://doi.org/10.1016/j.ejphar.2024.176862.

Article  CAS  PubMed  Google Scholar 

Zhang M, Johnson-Stephenson TK, Wang W, Wang Y, Li J, Li L, Zen K, Chen X, Zhu D. Mesenchymal stem cel

Comments (0)

No login
gif