Christophers E. Psoriasis − epidemiology and clinical spectrum: Psoriasis − epidemiology and clinical spectrum. Clin Exp Dermatol. 2001;26:314–20. https://doi.org/10.1046/j.1365-2230.2001.00832.x.
Article CAS PubMed Google Scholar
Di Meglio P, Villanova F, Nestle FO. Psoriasis. Cold Spring Harb Perspect Med. 2014;4:a015354–a015354. https://doi.org/10.1101/cshperspect.a015354.
Article CAS PubMed PubMed Central Google Scholar
Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361:496–509. https://doi.org/10.1056/NEJMra0804595.
Article CAS PubMed Google Scholar
Schön MP, Boehncke W-H. Psoriasis. N Engl J Med. 2005;352:1899–912. https://doi.org/10.1056/NEJMra041320.
Boehncke W-H. Etiology and pathogenesis of psoriasis. Rheum Dis Clin North Am. 2015;41:665–75. https://doi.org/10.1016/j.rdc.2015.07.013.
Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang Y-H, Homey B, Cao W, Wang Y-H, Su B, Nestle FO, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449:564–9. https://doi.org/10.1038/nature06116.
Article CAS PubMed Google Scholar
Morizane S, Gallo RL. Antimicrobial peptides in the pathogenesis of psoriasis. J Dermatol. 2012;39:225–30. https://doi.org/10.1111/j.1346-8138.2011.01483.x.
Article CAS PubMed PubMed Central Google Scholar
Keijsers RRMC, Hendriks AGM, Van Erp PEJ, Van Cranenbroek B, Van De Kerkhof PCM, Koenen HJPM, Joosten I. In vivo induction of cutaneous inflammation results in the accumulation of extracellular trap-forming neutrophils expressing RORγt and IL-17. J Invest Dermatol. 2014;134:1276–84. https://doi.org/10.1038/jid.2013.526.
Article CAS PubMed Google Scholar
Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol Mech Dis. 2010;5:253–95. https://doi.org/10.1146/annurev.pathol.4.110807.092250.
Newton K, Hildebrand JM, Shen Z, Rodriguez D, Alvarez-Diaz S, Petersen S, Shah S, Dugger DL, Huang C, Auwerx J, et al. Is SIRT2 required for necroptosis? Nature. 2014;506:E4–6. https://doi.org/10.1038/nature13024.
Article CAS PubMed PubMed Central Google Scholar
Fan X, Yan K, Meng Q, Sun R, Yang X, Yuan D, Li F, Deng H. Abnormal expression of SIRTs in psoriasis: decreased expression of SIRT 1–5 and increased expression of SIRT 6 and 7. Int J Mol Med. 2019. https://doi.org/10.3892/ijmm.2019.4173.
Article PubMed PubMed Central Google Scholar
Lang A, Anand R, Altinoluk-Hambüchen S, Ezzahoini H, Stefanski A, Iram A, Bergmann L, Urbach J, Böhler P, Hänsel J, et al. SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy. Aging. 2018;10:2536–2536. https://doi.org/10.18632/aging.101570.
Article CAS PubMed Central Google Scholar
Sack MN, Finkel T. Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb Perspect Biol. 2012;4:a013102–a013102. https://doi.org/10.1101/cshperspect.a013102.
Article CAS PubMed PubMed Central Google Scholar
Mathias RA, Greco TM, Cristea IM. Identification of Sirtuin4 (SIRT4) Protein Interactions: Uncovering Candidate Acyl-Modified Mitochondrial Substrates and Enzymatic Regulators. In: Deacetylases H, Sarkar S, editors. Methods in Molecular Biology. New York: Springer New York; 2016. vol. 1436, pp. 213–239. ISBN 978–1–4939–3665–6.
Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun. 2017;482:426–31. https://doi.org/10.1016/j.bbrc.2016.11.088.
Article CAS PubMed Google Scholar
Cirotti C, Rizza S, Giglio P, Poerio N, Allega MF, Claps G, Pecorari C, Lee J, Benassi B, Barilà D, et al. Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress. EMBO Rep. 2021;22: e50500. https://doi.org/10.15252/embr.202050500.
Article CAS PubMed Google Scholar
Zhang C, Nie P, Zhou C, Hu Y, Duan S, Gu M, Jiang D, Wang Y, Deng Z, Chen J, et al. Oxidative stress-induced mitophagy is suppressed by the miR-106b-93-25 cluster in a protective manner. Cell Death Dis. 2021;12:209. https://doi.org/10.1038/s41419-021-03484-3.
Article CAS PubMed PubMed Central Google Scholar
Zhang S, Hu L, Jiang J, Li H, Wu Q, Ooi K, Wang J, Feng Y, Zhu D, Xia C. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation. 2020;17:15. https://doi.org/10.1186/s12974-019-1673-3.
Article CAS PubMed PubMed Central Google Scholar
Cannavò SP, Riso G, Casciaro M, Di Salvo E, Gangemi S. Oxidative stress involvement in psoriasis: a systematic review. Free Radic Res. 2019;53:829–40. https://doi.org/10.1080/10715762.2019.1648800.
Article CAS PubMed Google Scholar
Pleńkowska J, Gabig-Cimińska M, Mozolewski P. Oxidative stress as an important contributor to the pathogenesis of psoriasis. IJMS. 2020;21:6206. https://doi.org/10.3390/ijms21176206.
Article CAS PubMed PubMed Central Google Scholar
Chimenti MS, Sunzini F, Fiorucci L, Botti E, Fonti GL, Conigliaro P, Triggianese P, Costa L, Caso F, Giunta A, et al. Potential role of cytochrome c and tryptase in psoriasis and psoriatic arthritis pathogenesis: focus on resistance to apoptosis and oxidative stress. Front Immunol. 2018;9:2363. https://doi.org/10.3389/fimmu.2018.02363.
Article CAS PubMed PubMed Central Google Scholar
Nowak-Perlak M, Szpadel K, Jabłońska I, Pizon M, Woźniak M. Promising strategies in plant-derived treatments of psoriasis-update of in vitro, in vivo, and clinical trials studies. Molecules. 2022;27:591. https://doi.org/10.3390/molecules27030591.
Article CAS PubMed PubMed Central Google Scholar
Mizuguchi S, Gotoh K, Nakashima Y, Setoyama D, Takata Y, Ohga S, Kang D. Mitochondrial reactive oxygen species are essential for the development of psoriatic inflammation. Front Immunol. 2021;12: 714897. https://doi.org/10.3389/fimmu.2021.714897.
Article CAS PubMed PubMed Central Google Scholar
Guo M, Zhuang H, Su Y, Meng Q, Liu W, Liu N, Wei M, Dai S-M, Deng H. SIRT3 alleviates imiquimod-induced psoriatic dermatitis through deacetylation of XBP1s and modulation of TLR7/8 inducing IL-23 production in macrophages. Front Immunol. 2023;14:1128543. https://doi.org/10.3389/fimmu.2023.1128543.
Article CAS PubMed PubMed Central Google Scholar
Yanli M, Yu W, Yuzhen L. Elevated SIRT3 Parkin-dependently activates cell mitophagy to ameliorate TNF-α-induced psoriasis-related phenotypes in HaCaT cells through deacetylating FOXO3a for its activation. Arch Dermatol Res. 2022;315:847–57. https://doi.org/10.1007/s00403-022-02453-w.
Article CAS PubMed Google Scholar
Zullo A, Guida R, Sciarrillo R, Mancini FP. Redox homeostasis in cardiovascular disease: the role of mitochondrial sirtuins. Front Endocrinol. 2022;13: 858330. https://doi.org/10.3389/fendo.2022.858330.
He L, Wang J, Yang Y, Zou P, Xia Z, Li J. SIRT4 suppresses doxorubicin-induced cardiotoxicity by regulating the AKT/mTOR/autophagy pathway. Toxicology. 2022;469: 153119. https://doi.org/10.1016/j.tox.2022.153119.
Article CAS PubMed Google Scholar
Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, Steegborn C, Nowak T, Schutkowski M, Pellegrini L, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11:253–70. https://doi.org/10.1080/15548627.2015.1009778.
Comments (0)