Mitochondrial sirtuins 3, 4 and 5 in patients with psoriasis

Christophers E. Psoriasis − epidemiology and clinical spectrum: Psoriasis − epidemiology and clinical spectrum. Clin Exp Dermatol. 2001;26:314–20. https://doi.org/10.1046/j.1365-2230.2001.00832.x.

Article  CAS  PubMed  Google Scholar 

Di Meglio P, Villanova F, Nestle FO. Psoriasis. Cold Spring Harb Perspect Med. 2014;4:a015354–a015354. https://doi.org/10.1101/cshperspect.a015354.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361:496–509. https://doi.org/10.1056/NEJMra0804595.

Article  CAS  PubMed  Google Scholar 

Schön MP, Boehncke W-H. Psoriasis. N Engl J Med. 2005;352:1899–912. https://doi.org/10.1056/NEJMra041320.

Article  PubMed  Google Scholar 

Boehncke W-H. Etiology and pathogenesis of psoriasis. Rheum Dis Clin North Am. 2015;41:665–75. https://doi.org/10.1016/j.rdc.2015.07.013.

Article  PubMed  Google Scholar 

Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang Y-H, Homey B, Cao W, Wang Y-H, Su B, Nestle FO, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449:564–9. https://doi.org/10.1038/nature06116.

Article  CAS  PubMed  Google Scholar 

Morizane S, Gallo RL. Antimicrobial peptides in the pathogenesis of psoriasis. J Dermatol. 2012;39:225–30. https://doi.org/10.1111/j.1346-8138.2011.01483.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keijsers RRMC, Hendriks AGM, Van Erp PEJ, Van Cranenbroek B, Van De Kerkhof PCM, Koenen HJPM, Joosten I. In vivo induction of cutaneous inflammation results in the accumulation of extracellular trap-forming neutrophils expressing RORγt and IL-17. J Invest Dermatol. 2014;134:1276–84. https://doi.org/10.1038/jid.2013.526.

Article  CAS  PubMed  Google Scholar 

Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol Mech Dis. 2010;5:253–95. https://doi.org/10.1146/annurev.pathol.4.110807.092250.

Article  CAS  Google Scholar 

Newton K, Hildebrand JM, Shen Z, Rodriguez D, Alvarez-Diaz S, Petersen S, Shah S, Dugger DL, Huang C, Auwerx J, et al. Is SIRT2 required for necroptosis? Nature. 2014;506:E4–6. https://doi.org/10.1038/nature13024.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan X, Yan K, Meng Q, Sun R, Yang X, Yuan D, Li F, Deng H. Abnormal expression of SIRTs in psoriasis: decreased expression of SIRT 1–5 and increased expression of SIRT 6 and 7. Int J Mol Med. 2019. https://doi.org/10.3892/ijmm.2019.4173.

Article  PubMed  PubMed Central  Google Scholar 

Lang A, Anand R, Altinoluk-Hambüchen S, Ezzahoini H, Stefanski A, Iram A, Bergmann L, Urbach J, Böhler P, Hänsel J, et al. SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy. Aging. 2018;10:2536–2536. https://doi.org/10.18632/aging.101570.

Article  CAS  PubMed Central  Google Scholar 

Sack MN, Finkel T. Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb Perspect Biol. 2012;4:a013102–a013102. https://doi.org/10.1101/cshperspect.a013102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathias RA, Greco TM, Cristea IM. Identification of Sirtuin4 (SIRT4) Protein Interactions: Uncovering Candidate Acyl-Modified Mitochondrial Substrates and Enzymatic Regulators. In: Deacetylases H, Sarkar S, editors. Methods in Molecular Biology. New York: Springer New York; 2016. vol. 1436, pp. 213–239. ISBN 978–1–4939–3665–6.

Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun. 2017;482:426–31. https://doi.org/10.1016/j.bbrc.2016.11.088.

Article  CAS  PubMed  Google Scholar 

Cirotti C, Rizza S, Giglio P, Poerio N, Allega MF, Claps G, Pecorari C, Lee J, Benassi B, Barilà D, et al. Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress. EMBO Rep. 2021;22: e50500. https://doi.org/10.15252/embr.202050500.

Article  CAS  PubMed  Google Scholar 

Zhang C, Nie P, Zhou C, Hu Y, Duan S, Gu M, Jiang D, Wang Y, Deng Z, Chen J, et al. Oxidative stress-induced mitophagy is suppressed by the miR-106b-93-25 cluster in a protective manner. Cell Death Dis. 2021;12:209. https://doi.org/10.1038/s41419-021-03484-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang S, Hu L, Jiang J, Li H, Wu Q, Ooi K, Wang J, Feng Y, Zhu D, Xia C. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation. 2020;17:15. https://doi.org/10.1186/s12974-019-1673-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cannavò SP, Riso G, Casciaro M, Di Salvo E, Gangemi S. Oxidative stress involvement in psoriasis: a systematic review. Free Radic Res. 2019;53:829–40. https://doi.org/10.1080/10715762.2019.1648800.

Article  CAS  PubMed  Google Scholar 

Pleńkowska J, Gabig-Cimińska M, Mozolewski P. Oxidative stress as an important contributor to the pathogenesis of psoriasis. IJMS. 2020;21:6206. https://doi.org/10.3390/ijms21176206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chimenti MS, Sunzini F, Fiorucci L, Botti E, Fonti GL, Conigliaro P, Triggianese P, Costa L, Caso F, Giunta A, et al. Potential role of cytochrome c and tryptase in psoriasis and psoriatic arthritis pathogenesis: focus on resistance to apoptosis and oxidative stress. Front Immunol. 2018;9:2363. https://doi.org/10.3389/fimmu.2018.02363.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nowak-Perlak M, Szpadel K, Jabłońska I, Pizon M, Woźniak M. Promising strategies in plant-derived treatments of psoriasis-update of in vitro, in vivo, and clinical trials studies. Molecules. 2022;27:591. https://doi.org/10.3390/molecules27030591.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mizuguchi S, Gotoh K, Nakashima Y, Setoyama D, Takata Y, Ohga S, Kang D. Mitochondrial reactive oxygen species are essential for the development of psoriatic inflammation. Front Immunol. 2021;12: 714897. https://doi.org/10.3389/fimmu.2021.714897.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo M, Zhuang H, Su Y, Meng Q, Liu W, Liu N, Wei M, Dai S-M, Deng H. SIRT3 alleviates imiquimod-induced psoriatic dermatitis through deacetylation of XBP1s and modulation of TLR7/8 inducing IL-23 production in macrophages. Front Immunol. 2023;14:1128543. https://doi.org/10.3389/fimmu.2023.1128543.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yanli M, Yu W, Yuzhen L. Elevated SIRT3 Parkin-dependently activates cell mitophagy to ameliorate TNF-α-induced psoriasis-related phenotypes in HaCaT cells through deacetylating FOXO3a for its activation. Arch Dermatol Res. 2022;315:847–57. https://doi.org/10.1007/s00403-022-02453-w.

Article  CAS  PubMed  Google Scholar 

Zullo A, Guida R, Sciarrillo R, Mancini FP. Redox homeostasis in cardiovascular disease: the role of mitochondrial sirtuins. Front Endocrinol. 2022;13: 858330. https://doi.org/10.3389/fendo.2022.858330.

Article  Google Scholar 

He L, Wang J, Yang Y, Zou P, Xia Z, Li J. SIRT4 suppresses doxorubicin-induced cardiotoxicity by regulating the AKT/mTOR/autophagy pathway. Toxicology. 2022;469: 153119. https://doi.org/10.1016/j.tox.2022.153119.

Article  CAS  PubMed  Google Scholar 

Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, Steegborn C, Nowak T, Schutkowski M, Pellegrini L, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11:253–70. https://doi.org/10.1080/15548627.2015.1009778.

Comments (0)

No login
gif