Optimizing Oxygenic Photosynthesis: pH-Regulation of Electron Transport in Chloroplasts

Edwards G.E., Walker D.A. 1983. C3, C4: Mechanisms, and cellular and environmental regulation of photosynthesis. Blackwell, Oxford.

Google Scholar 

Blankenship R.E. 2002. Molecular mechanisms of photosynthesis. Malden, MA: Blackwell Science Inc.

Google Scholar 

Buckanan B.B. 1980. Role of light in the regulation of chloroplast enzymes. Ann. Rev. Plant Physiol. 31, 341–374.

Google Scholar 

Andersson I. 2008. Catalysis and regulation in Rubisco. J. Exp. Bot. 59, 1555–1568.

PubMed  Google Scholar 

Tikhonov A.N. 2018. The cytochrome b 6   f complex: Biophysical aspects of its functioning in chloroplasts. In: Membrane protein complexes: Structure and function. Subcellular Biochemistry. Eds. Harris J.R., Boekema E.J. Singapore: Springer. 87, p. 287–328. https://doi.org/10.1007/978-981-10-7757-9_10

Strand D.D., Fisher N., Kramer D.M. 2016. Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts. In: Chloroplasts: Current research and future trends. Ed. Kirchhoff H. Norfolk, UK: Caister Academic Press, p. 89–100.

Google Scholar 

Shikanai T., Yamamoto H. 2017. Contribution of cyclic and pseudo-cyclic electron transport to the formation of proton motive force in chloroplasts. Mol. Plant. 10 (1), 20–29.

PubMed  Google Scholar 

Asada K. 1999. The water-water cycle in chloroplasts. Scavenging of active oxygens and dissipation of excess photons. Ann. Rev. Plant Physiol. Plant Molec. Biol. 50 (1), 601–639.

Google Scholar 

Foyer C.H., Noctor G. 2000. Oxygen processing in photosynthesis: Regulation and signalling. New Phytol. 146, 359–388.

Google Scholar 

Kozuleva M.A., Ivanov B.N. 2023. Superoxide anion radical generation in photosynthetic electron transport chain. Biochemistry (Moscow). 88 (8), 1283–1301.

Google Scholar 

Ivanov B., Borisova-Mubarakshina M., Vilyanen D., Vetoshkina D., Kozuleva M. 2022. Cooperative pathway of O2 reduction to H2O2 in chloroplast thylakoid membrane: New insight into the Mehler reaction. Biophys. Rev. 14 (4), 857–869.

PubMed  PubMed Central  Google Scholar 

Rumberg B., Siggel U. 1969. pH changes in the inner phase of the thylakoids during photosynthesis. Naturwissenschaften, 56, 130–132.

PubMed  Google Scholar 

Ryzhikov S.B., Tikhonov A.N. 1988. Electron-transport control in photosynthetic membranes of higher-plants. Biofizika (Rus.). 33 (4), 642–646.

Google Scholar 

Li X.-P., Gilmore A. M., Caffarri S., Bassi R., Golan T., Kramer D., Niyogi K.K. 2004. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 279 (22), 22 866–22 874.

Google Scholar 

Järvi S., Gollan P.J., Aro E.-M. 2013. Understanding the roles of the intrathylakoid lumen in photosynthetic regulation. Front. Plant Sci. 4, 434.

PubMed  PubMed Central  Google Scholar 

Tikhonov A.N. 2013. pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth. Res. 116, 511–534.

PubMed  Google Scholar 

Tikhonov A.N. 2015. Induction events and short-term regulation of electron transport in chloroplasts: An overview. Photosynth. Res. 125, 65–94.https://doi.org/10.1007/s11120-015-0094-0

PubMed  Google Scholar 

Tikhonov A.N. 2024. The cytochrome b 6   f complex: Plastoquinol oxidation and regulation of electron transport in chloroplasts. Photosynth. Res. 159, 203–227.

PubMed  Google Scholar 

Balsera M., Schürman P., Buchanan B.B. M. 2016. Redox regulation in chloroplasts. In Chloroplasts: Current research and future trends. Ed. Kirchhoff H. Norfolk, UK: Caister Acadtmic Press, p. 187–207.

Google Scholar 

Dubinsky A.Y., Tikhonov A.N. 1994. Regulation of electron and proton transport in chloroplasts. Kinetic model and its comparison with experiment. Biofizika (Rus.), 39 (4), 652–665.

Google Scholar 

Laisk A., Eichelmann Y., Oja V. 2009. Leaf C3 photosynthesis in silico: Integrated carbon/nitrogen metabolism. In: Photo-synthesis in silico: Understanding complexity from molecules to ecosystems. Eds. Laisk A., Nedbal L. Govindjee. Dordrecht, The Netherlands: Springer, p. 295–322.

Rubin A., Riznichenko G. 2014. Mathematical biophysics. N.Y.: Springer.

Google Scholar 

Tikhonov A.N. 2016. Modeling electron and proton transport in chloroplasts. In: Chloroplasts. Current research and future trends. Ed. Kirchhoff H. UK: Caister Academic Press, p. 101–134.

Google Scholar 

Vershubsky A.V., Priklonsky V.I., Tikhonov A.N. 2001. Electron and proton transport in chloroplasts with allowance for lateral heterogeneity of thylakoids. A mathematical model. Biofizika (Rus.). 46 (3) 471–485.

Google Scholar 

Vershubskii A.V., Priklonsky V.I., Tikhonov A.N. 2004. Mathematical modeling of electron and proton transport, coupled with ATP synthesis in chloroplasts. Biofizika (Rus.). 49 (1), 57–71.

Google Scholar 

Vershubskii A.V., Kuvykin I.V., Priklonsky V.I., Tikhonov A.N. 2011. Functional and topological aspects of pH-dependent regulation of electron and proton transport in chloroplasts in silico. Biosystems. 103, 164–179.

PubMed  Google Scholar 

Vershubskii A.V., Tikhonov A.N. 2013. Electron transport and transmembrane proton transfer in photosynthetic systems of oxygenic type in silico. Biofizika (Rus.). 58 (1), 75–89.

Google Scholar 

Vershubskii A.V., Mishanin V.I., Tikhonov A.N. 2014. Modeling of the photosynthetic electron transport regulation in cyanobacteria. Biochem. (Mosc.) Suppl. Series A: Membr. Cell Biol. 8 (3), 262–278.

Google Scholar 

Tikhonov A.N., Vershubskii A.V. 2014. Computer modeling of electron and proton transport in chloroplasts. Biosystems. 121, 1–21. https://doi.org/10.1016/j.biosystems.2014.04.007

PubMed  Google Scholar 

Vershubskii A.V., Trubitsin B.V., Priklonsky V.I., T-ikhonov A.N. 2017. Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts. Biochim. Biophys. Acta. 1859, 388–401.

Google Scholar 

Vershubskii A.V., Nevyantsev S.M., Tikhonov A.N. 2018. Modeling of electron and proton transport in chloroplast membranes with regard to thioredoxin-dependent activation of the Calvin–Benson cycle and ATP synthase. Biochem. (Moscow), Suppl. Series A: Membr. Cell Biol. 12 (3), 287–302.

Google Scholar 

Vershubsky A.V., Tikhonov A.N. 2020. pH-dependent regulation of electron and proton transport in chloroplasts in situ and in silico. Biochem. (Moscow), Suppl. Series A: Membr. Cell Biol. 14 (2), 154–165.

Google Scholar 

Tikhonov A.N., Vershubskii A.V. 2020. Temperature‑dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico. Photosynth. Res. 146, 299–329.

PubMed  Google Scholar 

Vershubsky A.V., Priklonsky V.I., Tikhonov A.N. 2024. Oxygenic photosynthesis: induction of chlorophyll a fluorescence and regulation of electron transport in thylakoid membrane in silico. Biochem. (Moscow), Suppl. Series A: Membr. Cell Biol. 18 (4), 324–338.

Google Scholar 

Karavaev V.A., Kukushkin A.K. 1976. Application of fast fluorescence induction to study of electron-transport chain states in leaves of higher-plants. Biofizika (Rus.). 21 (5), 862–866.

Google Scholar 

Lazár D. 1999. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta, 1412 (1), 1–28.

PubMed  Google Scholar 

Stirbet A., Govindjee, Strasser B., Strasser R.J. 1998. Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation. J. Theor. Biol. 193, 131–151.

Google Scholar 

Johnson, M.P., Ruban, A.V. 2014. Rethinking the existence of a steady state Δψ component of the proton motive force across plant thylakoid membranes. Photosynth. Res. 60, 151–163.

Google Scholar 

Wilson S., Johnson M.P., Ruban A.V. 2021. Proton motive force in plant photosynthesis dominated by ΔpH in both low and high light. Plant Physiol. 187, 263–275.

PubMed  PubMed Central  Google Scholar 

Trinh M.D.K., Masuda S. 2022. Chloroplast pH regulation homeostasis for the regulation of photosynthesis. Front. Plant Sci. 13, 919896. https://doi.org/10.3389/fpls.2022.919896

PubMed  PubMed Central  Google Scholar 

Semenov A.Yu., Tikhonov A.N. 2023. Electrometric and electron paramagnetic resonance measurements of a difference in the transmembrane electrochemical potential: Photosynthetic subcellular structures and isolated pigment–protein complexes. Membranes. 13, 1–22. https://doi.org/10.3390/membranes13110866

Google Scholar 

Tikhonov A.N., Khomutov G.B., Ruuge E.K., Blumenfeld L.A. 1981. Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH. Biochem. Biophys. Acta. 637, 321–333.

Google Scholar 

Kramer D.M., Sacksteder C.A., Cruz J.A. 1999. How acidic is the lumen? Photosynth. Res. 60, 151–163.

Google Scholar 

Trubitsin B.V., Tikhonov A.N. 2003. Determination of a transmembrane pH difference in chloroplasts with a spin label Tempamine. J. Magnet. Reson. 163, 257–269.

Google Scholar 

Tikhonov A.N., Agafonov R.V., Grigor’ev I.A., Kirilyuk I.A., Ptushenko V.V., Trubitsin B.V. 2008. Spin-probes designed for measuring the intrathylakoid pH in chloroplasts. Biochim. Biophis. Acta. 1777, 285–294.

Google Scholar 

Kirchhoff H., Hall C., Wood M., Herbstová M., Tsabari O., Nevo R., Charuvi D., Shimoni E., Reich Z. 2011. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl. Acad. Sci. USA. 108, 20248–20253.

PubMed  PubMed Central  Google Scholar 

Suslichenko I.S., Trubitsin B.V., Vershubskii A.V., Tikhonov A.N. 2022. The noninvasive monitoring of the redox status of photosynthetic electron transport in Hibiscus rosa-sinensis and Tradescantia leaves. Plant Physiol. Biochem. 185, 233–243.

PubMed  Google Scholar 

Benkov M.A., Suslichenko I.S., Trubitsyn B.V., Tikhonov A.N. 2023. Effects of plant acclimation on electron transport in chloroplasts membranes of Cucumis sativus and Cucumis melo. Biochem. (Moscow), Suppl. Series A: Membr. Cell Biol. 17 (2), 92–105.

Google Scholar 

Marinin N.A., Suslichenko I.S., Tikhonov A.N. 2025. Regulation of electron transport in chloroplasts: induction processes in the leaves of plants of the genus Cucumis. Biofizika (Rus.). 70, 59–71.

Google Scholar 

Ivanov B., Mubarakshina M., Khorobrykh S. 2007. Kinetics of the plastoquinone pool oxidation following illumination. Oxygen incorporation into photosynthetic electron transport chain. FEBS Lett. 581, 1342–1346.

PubMed  Google Scholar 

Dubinsky A.Y., Tikhonov A.N. 1997. Mathematical model of thylakoid as the distributed heterogeneous system of electron and proton transport. Biofizika (Rus.). 42 (3), 644–661.

Google Scholar 

Genty B., Briantais J.-M., Baker N.R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 990, 87–92.

Google Scholar 

Schansker G., Tóth S., Holzwart A.R., Garab G. 2014. Chlorophyll a fluorescence: Beyond the limits of the QA model. Photosynth. Res. 128, 43–58.

Google Scholar 

Govindjee G. 1995. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant Physiol. 22, 131–160.

Comments (0)

No login
gif