Van Meer G., Lisman Q. 2002. Sphingolipid transport: Rafts and translocators. J. Biol. Chem. 277, 25 855–25 858. https://doi.org/10.1074/jbc.R200010200
Marsh D. 2009. Cholesterol-induced fluid membrane domains: A compendium of lipid-raft ternary phase diagrams. Biochim. Biophys. Acta BBA, Biomembr. 1788, 2114–2123. https://doi.org/10.1016/j.bbamem.2009.08.004
London E. 2005. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim. Biophys. Acta BBA, Mol. Cell Res. 1746, 203–220. https://doi.org/10.1016/j.bbamcr.2005.09.002
Van Meer G., Voelker D.R., Feigenson G.W. 2008. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124.https://doi.org/10.1038/nrm2330
Article PubMed PubMed Central CAS Google Scholar
Osawa T., Fujikawa K., Shimamoto K. 2024. Structures, functions, and syntheses of glycero-glycophospholipids. Front. Chem. 12, 1353688. https://doi.org/10.3389/fchem.2024.1353688
Article PubMed PubMed Central CAS Google Scholar
Korbecki J., Bosiacki M., Kupnicka P., Barczak K., Ziętek P., Chlubek D., Baranowska-Bosiacka I. 2024. Biochemistry and diseases related to the interconversion of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Int. J. Mol. Sci. 25, 10745. https://doi.org/10.3390/ijms251910745
Article PubMed PubMed Central CAS Google Scholar
Chen L., Chen X.-W., Huang X., Song B.-L., Wang Y., Wang Y. 2019. Regulation of glucose and lipid metabolism in health and disease. Sci. China Life Sci. 62, 1420–1458. https://doi.org/10.1007/s11427-019-1563-3
Burke J.E. 2018. Structural basis for regulation of phosphoinositide kinases and their involvement in human disease. Mol. Cell. 71, 653–673. https://doi.org/10.1016/j.molcel.2018.08.005
Article PubMed CAS Google Scholar
Billcliff P.G., Lowe M. 2014. Inositol lipid phosphatases in membrane trafficking and human disease. Biochem. J. 461, 159–175. https://doi.org/10.1042/BJ20140361
Article PubMed CAS Google Scholar
Maekawa M., Fairn G.D. 2014. Molecular probes to visualize the location, organization and dynamics of lipids. J. Cell Sci. jcs.150524. https://doi.org/10.1242/jcs.150524
Eurtivong C., Leung E., Sharma N., Leung I.K.H., Reynisson J. 2023. Phosphatidylcholine-specific phospholipase C as a promising drug target. Molecules. 28, 5637. https://doi.org/10.3390/molecules28155637
Article PubMed PubMed Central CAS Google Scholar
Exton J.H. 1994. Phosphatidylcholine breakdown and signal transduction. Biochim. Biophys. Acta BBA, Lipids Lipid Metab. 1212, 26–42. https://doi.org/10.1016/0005-2760(94)90186-4
Kennedy E.P., Weiss S.B. 1956. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 222, 193–214. https://doi.org/10.1016/S0021-9258(19)50785-2
Article PubMed CAS Google Scholar
Vance D.E., Ridgway N.D. 1988. The methylation of phosphatidylethanolamine. Prog. Lipid Res. 27, 61–79. https://doi.org/10.1016/0163-7827(88)90005-7
Article PubMed CAS Google Scholar
Eichner N.Z.M., Gilbertson N.M., Musante L., La Salvia S., Weltman A., Erdbrügger U., Malin S.K. 2019. An oral glucose load decreases postprandial extracellular vesicles in obese adults with and without prediabetes. Nutrients. 11, 580. https://doi.org/10.3390/nu11030580
Article PubMed PubMed Central CAS Google Scholar
Jimenez J.J., Jy W., Mauro L.M., Soderland C., Horstman L.L., Ahn Y.S. 2003. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb. Res. 109, 175–180. https://doi.org/10.1016/S0049-3848(03)00064-1
Article PubMed CAS Google Scholar
Enjeti A., Lincz L., Seldon M. 2007. Detection and measurement of microparticles: An evolving research tool for vascular biology. Semin. Thromb. Hemost. 33, 771–779. https://doi.org/10.1055/s-2007-1000369
Article PubMed CAS Google Scholar
Connor D.E., Exner T., Ma D.D.F., Joseph J.E. 2010. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb. Haemost. 103, 1044–1052. https://doi.org/10.1160/TH09-09-0644
Article PubMed CAS Google Scholar
Key N.S. 2010. Analysis of tissue factor positive microparticles. Thromb. Res. 125, S42–S45. https://doi.org/10.1016/j.thromres.2010.01.035
Article PubMed PubMed Central CAS Google Scholar
Ridger V.C., Boulanger C.M., Angelillo-Scherrer A., Badimon L., Blanc-Brude O., Bochaton-Piallat M.-L., Boilard E., Buzas E.I., Caporali A., Dignat-George F., Evans P.C., Lacroix R., Lutgens E., Ketelhuth D.F.J., Nieuwland R., Toti F., Tuñon J., Weber C., Hoefer I.E., Lip G.Y.H., Werner N., Shantsila E., Ten Cate H., Thomas M., Harrison P. 2017. Microvesicles in vascular homeostasis and diseases: Position paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb. Haemost. 117, 1296–1316. https://doi.org/10.1160/TH16-12-0943
An S.J., Stagi M., Gould T.J., Wu Y., Mlodzianoski M., Rivera-Molina F., Toomre D., Strittmatter S.M., De Camilli P., Bewersdorf J., Zenisek D. 2022. Multimodal imaging of synaptic vesicles with a single probe. Cell Rep. Methods. 2, 100199. https://doi.org/10.1016/j.crmeth.2022.100199
Article PubMed PubMed Central CAS Google Scholar
Hirano Y., Gao Y.-G., Stephenson D.J., Vu N.T., Malinina L., Simanshu D.K., Chalfant C.E., Patel D.J., Brown R.E. 2019. Structural basis of phosphatidylcholine recognition by the C2–domain of cytosolic phospholipase A2α. eLife. 8, e44760. https://doi.org/10.7554/eLife.44760
Article PubMed PubMed Central CAS Google Scholar
Ward K.E., Ropa J.P., Adu-Gyamfi E., Stahelin R.V. 2012. C2 domain membrane penetration by group IVA cytosolic phospholipase A2 induces membrane curvature changes. J. Lipid Res. 53, 2656–2666. https://doi.org/10.1194/jlr.M030718
Article PubMed PubMed Central CAS Google Scholar
Perisic O., Paterson H.F., Mosedale G., Lara-González S., Williams R.L. 1999. Mapping the phospholipid-binding surface and translocation determinants of the C2 domain from cytosolic phospholipase A2. J. Biol. Chem. 274, 14 979–14 987. https://doi.org/10.1074/jbc.274.21.14979
Rand M.L., Wang H., Pluthero F.G., Stafford A.R., Ni R., Vaezzadeh N., Allison A.C., Kahr W.H.A., Weitz J.I., Gross P.L. 2012. Diannexin, an annexin A5 homodimer, binds phosphatidylserine with high affinity and is a potent inhibitor of platelet-mediated events during thrombus formation. J. Thromb. Haemost. 10, 1109–1119. https://doi.org/10.1111/j.1538-7836.2012.04716.x
Article PubMed CAS Google Scholar
Shao C., Novakovic V.A., Head J.F., Seaton B.A., Gilbert G.E. 2008. Crystal structure of lactadherin C2 domain at 1.7Å resolution with mutational and computational analyses of its membrane-binding motif. J. Biol. Chem. 283, 7230–7241. https://doi.org/10.1074/jbc.M705195200
Article PubMed CAS Google Scholar
Ye H., Li B., Subramanian V., Choi B.-H., Liang Y., Harikishore A., Chakraborty G., Baek K., Yoon H.S. 2013. NMR solution structure of C2 domain of MFG-E8 and insights into its molecular recognition with phosphatidylserine. Biochim. Biophys. Acta BBA, Biomembr. 1828, 1083–1093. https://doi.org/10.1016/j.bbamem.2012.12.009
Uchida Y., Hasegawa J., Chinnapen D., Inoue T., Okazaki S., Kato R., Wakatsuki S., Misaki R., Koike M., Uchiyama Y., Iemura S., Natsume T., Kuwahara R., Nakagawa T., Nishikawa K., Mukai K., Miyoshi E., Taniguchi N., Sheff D., Lencer W.I., Taguchi T., Arai H. 2011. Intracellular phosphatidylserine is essential for retrograde membrane traffic through endosomes. Proc. Natl. Acad. Sci. USA. 108, 15 846–15 851. https://doi.org/10.1073/pnas.1109101108
Comments (0)