Recombinant Protein Biosensors of Cell Membrane Lipids

Van Meer G., Lisman Q. 2002. Sphingolipid transport: Rafts and translocators. J. Biol. Chem. 277, 25 855–25 858. https://doi.org/10.1074/jbc.R200010200

Article  CAS  Google Scholar 

Marsh D. 2009. Cholesterol-induced fluid membrane domains: A compendium of lipid-raft ternary phase diagrams. Biochim. Biophys. Acta BBA, Biomembr. 1788, 2114–2123. https://doi.org/10.1016/j.bbamem.2009.08.004

Article  CAS  Google Scholar 

London E. 2005. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim. Biophys. Acta BBA, Mol. Cell Res. 1746, 203–220. https://doi.org/10.1016/j.bbamcr.2005.09.002

Article  CAS  Google Scholar 

Van Meer G., Voelker D.R., Feigenson G.W. 2008. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124.https://doi.org/10.1038/nrm2330

Article  PubMed  PubMed Central  CAS  Google Scholar 

Osawa T., Fujikawa K., Shimamoto K. 2024. Structures, functions, and syntheses of glycero-glycophospholipids. Front. Chem. 12, 1353688. https://doi.org/10.3389/fchem.2024.1353688

Article  PubMed  PubMed Central  CAS  Google Scholar 

Korbecki J., Bosiacki M., Kupnicka P., Barczak K., Ziętek P., Chlubek D., Baranowska-Bosiacka I. 2024. Biochemistry and diseases related to the interconversion of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Int. J. Mol. Sci. 25, 10745. https://doi.org/10.3390/ijms251910745

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen L., Chen X.-W., Huang X., Song B.-L., Wang Y., Wang Y. 2019. Regulation of glucose and lipid metabolism in health and disease. Sci. China Life Sci. 62, 1420–1458. https://doi.org/10.1007/s11427-019-1563-3

Article  PubMed  Google Scholar 

Burke J.E. 2018. Structural basis for regulation of phosphoinositide kinases and their involvement in human disease. Mol. Cell. 71, 653–673. https://doi.org/10.1016/j.molcel.2018.08.005

Article  PubMed  CAS  Google Scholar 

Billcliff P.G., Lowe M. 2014. Inositol lipid phosphatases in membrane trafficking and human disease. Biochem. J. 461, 159–175. https://doi.org/10.1042/BJ20140361

Article  PubMed  CAS  Google Scholar 

Maekawa M., Fairn G.D. 2014. Molecular probes to visualize the location, organization and dynamics of lipids. J. Cell Sci. jcs.150524. https://doi.org/10.1242/jcs.150524

Eurtivong C., Leung E., Sharma N., Leung I.K.H., Reynisson J. 2023. Phosphatidylcholine-specific phospholipase C as a promising drug target. Molecules. 28, 5637. https://doi.org/10.3390/molecules28155637

Article  PubMed  PubMed Central  CAS  Google Scholar 

Exton J.H. 1994. Phosphatidylcholine breakdown and signal transduction. Biochim. Biophys. Acta BBA, Lipids Lipid Metab. 1212, 26–42. https://doi.org/10.1016/0005-2760(94)90186-4

Article  CAS  Google Scholar 

Kennedy E.P., Weiss S.B. 1956. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 222, 193–214. https://doi.org/10.1016/S0021-9258(19)50785-2

Article  PubMed  CAS  Google Scholar 

Vance D.E., Ridgway N.D. 1988. The methylation of phosphatidylethanolamine. Prog. Lipid Res. 27, 61–79. https://doi.org/10.1016/0163-7827(88)90005-7

Article  PubMed  CAS  Google Scholar 

Eichner N.Z.M., Gilbertson N.M., Musante L., La Salvia S., Weltman A., Erdbrügger U., Malin S.K. 2019. An oral glucose load decreases postprandial extracellular vesicles in obese adults with and without prediabetes. Nutrients. 11, 580. https://doi.org/10.3390/nu11030580

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jimenez J.J., Jy W., Mauro L.M., Soderland C., Horstman L.L., Ahn Y.S. 2003. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb. Res. 109, 175–180. https://doi.org/10.1016/S0049-3848(03)00064-1

Article  PubMed  CAS  Google Scholar 

Enjeti A., Lincz L., Seldon M. 2007. Detection and measurement of microparticles: An evolving research tool for vascular biology. Semin. Thromb. Hemost. 33, 771–779. https://doi.org/10.1055/s-2007-1000369

Article  PubMed  CAS  Google Scholar 

Connor D.E., Exner T., Ma D.D.F., Joseph J.E. 2010. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb. Haemost. 103, 1044–1052. https://doi.org/10.1160/TH09-09-0644

Article  PubMed  CAS  Google Scholar 

Key N.S. 2010. Analysis of tissue factor positive microparticles. Thromb. Res. 125, S42–S45. https://doi.org/10.1016/j.thromres.2010.01.035

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ridger V.C., Boulanger C.M., Angelillo-Scherrer A., Badimon L., Blanc-Brude O., Bochaton-Piallat M.-L., Boilard E., Buzas E.I., Caporali A., Dignat-George F., Evans P.C., Lacroix R., Lutgens E., Ketelhuth D.F.J., Nieuwland R., Toti F., Tuñon J., Weber C., Hoefer I.E., Lip G.Y.H., Werner N., Shantsila E., Ten Cate H., Thomas M., Harrison P. 2017. Microvesicles in vascular homeostasis and diseases: Position paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb. Haemost. 117, 1296–1316. https://doi.org/10.1160/TH16-12-0943

Article  PubMed  Google Scholar 

An S.J., Stagi M., Gould T.J., Wu Y., Mlodzianoski M., Rivera-Molina F., Toomre D., Strittmatter S.M., De Camilli P., Bewersdorf J., Zenisek D. 2022. Multimodal imaging of synaptic vesicles with a single probe. Cell Rep. Methods. 2, 100199. https://doi.org/10.1016/j.crmeth.2022.100199

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hirano Y., Gao Y.-G., Stephenson D.J., Vu N.T., Malinina L., Simanshu D.K., Chalfant C.E., Patel D.J., Brown R.E. 2019. Structural basis of phosphatidylcholine recognition by the C2–domain of cytosolic phospholipase A2α. eLife. 8, e44760. https://doi.org/10.7554/eLife.44760

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ward K.E., Ropa J.P., Adu-Gyamfi E., Stahelin R.V. 2012. C2 domain membrane penetration by group IVA cytosolic phospholipase A2 induces membrane curvature changes. J. Lipid Res. 53, 2656–2666. https://doi.org/10.1194/jlr.M030718

Article  PubMed  PubMed Central  CAS  Google Scholar 

Perisic O., Paterson H.F., Mosedale G., Lara-González S., Williams R.L. 1999. Mapping the phospholipid-binding surface and translocation determinants of the C2 domain from cytosolic phospholipase A2. J. Biol. Chem. 274, 14 979–14 987. https://doi.org/10.1074/jbc.274.21.14979

Article  Google Scholar 

Rand M.L., Wang H., Pluthero F.G., Stafford A.R., Ni R., Vaezzadeh N., Allison A.C., Kahr W.H.A., Weitz J.I., Gross P.L. 2012. Diannexin, an annexin A5 homodimer, binds phosphatidylserine with high affinity and is a potent inhibitor of platelet-mediated events during thrombus formation. J. Thromb. Haemost. 10, 1109–1119. https://doi.org/10.1111/j.1538-7836.2012.04716.x

Article  PubMed  CAS  Google Scholar 

Shao C., Novakovic V.A., Head J.F., Seaton B.A., Gilbert G.E. 2008. Crystal structure of lactadherin C2 domain at 1.7Å resolution with mutational and computational analyses of its membrane-binding motif. J. Biol. Chem. 283, 7230–7241. https://doi.org/10.1074/jbc.M705195200

Article  PubMed  CAS  Google Scholar 

Ye H., Li B., Subramanian V., Choi B.-H., Liang Y., Harikishore A., Chakraborty G., Baek K., Yoon H.S. 2013. NMR solution structure of C2 domain of MFG-E8 and insights into its molecular recognition with phosphatidylserine. Biochim. Biophys. Acta BBA, Biomembr. 1828, 1083–1093. https://doi.org/10.1016/j.bbamem.2012.12.009

Article  CAS  Google Scholar 

Uchida Y., Hasegawa J., Chinnapen D., Inoue T., Okazaki S., Kato R., Wakatsuki S., Misaki R., Koike M., Uchiyama Y., Iemura S., Natsume T., Kuwahara R., Nakagawa T., Nishikawa K., Mukai K., Miyoshi E., Taniguchi N., Sheff D., Lencer W.I., Taguchi T., Arai H. 2011. Intracellular phosphatidylserine is essential for retrograde membrane traffic through endosomes. Proc. Natl. Acad. Sci. USA. 108, 15 846–15 851. https://doi.org/10.1073/pnas.1109101108

Comments (0)

No login
gif