Modica-Napolitano J.S., Koya K., Weisberg E., Brunelli B.T., Li Y., Chen L.B. 1996. Selective damage to carcinoma mitochondria by the rhodacyanine MKT-077. Cancer Res. 56 (3), 544–550.
Koya K., Li Y., Wang H., Ukai T., Tatsuta N., Kawakami M., Shishido, Chen L.B. 1996. MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res. 56, 538–543.
Chiba Y., Kubota T., Watanabe M., Matsuzaki S.W., Otani Y., Teramoto T., Matsumoto Y., Koya K., Kitajima M. 1998. MKT-077, localized lipophilic cation: Antitumor activity against human tumor xenografts serially transplanted into nude mice. Anticancer Res. 18 (2A), 1047–1052.
Wen B., Xu K., Huang R., Jiang T., Wang J., Chen J., Chen J., He B. 2022. Preserving mitochondrial function by inhibiting GRP75 ameliorates neuron injury under ischemic stroke. Mol. Med. Rep. 25 (5), 165. https://doi.org/10.3892/mmr.2022.12681
Article PubMed PubMed Central CAS Google Scholar
Liang T., Hang W., Chen J., Wu Y., Wen B., Xu K., Ding B., Chen J. 2021. ApoE4 (Δ272-299) induces mitochondrial-associated membrane formation and mitochondrial impairment by enhancing GRP75-modulated mitochondrial calcium overload in neuron. Cell Biosci. 11 (1), 50. https://doi.org/10.1186/s13578-021-00563-y
Article PubMed PubMed Central CAS Google Scholar
Rousaki A., Miyata Y., Jinwal U.K., Dickey C.A., Gestwicki J.E., Zuiderweg E.R. 2011. Allosteric drugs: The interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J. Mol. Biol. 411 (3), 614–632. https://doi.org/10.1016/j.jmb.2011.06.003
Article PubMed PubMed Central CAS Google Scholar
Xu H., Guan N., Ren Y.L., Wei Q.J., Tao Y.H., Yang G.S., Liu X.Y., Bu D.F., Zhang Y., Zhu S.N. 2018. IP3R-Grp75-VDAC1-MCU calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an Adriamycin nephropathy rat model. BMC Nephrol. 9 (1), 140. https://doi.org/10.1186/s12882-018-0940-3
Li J., Qi F., Su H., Zhang C., Zhang Q., Zhang S. 2022. GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int. J. Biol Sci. 18 (7), 2914–2931. https://doi.org/10.7150/ijbs.71571
Article PubMed PubMed Central CAS Google Scholar
Esfahanian N., Knoblich C.D., Bowman G.A., Rezvani K. 2023. Mortalin: Protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front. Cell Dev. Biol. 11, 1028519. https://doi.org/10.3389/fcell.2023.1028519
Article PubMed PubMed Central Google Scholar
Williamson C.L., Dabkowski E.R., Dillmann W.H., Hollander J.M. 2008. Mitochondria protection from hypoxia/reoxygenation injury with mitochondria heat shock protein 70 overexpression. Am. J. Physiol. Heart Circ. Physiol. 294 (1), H249–H256. https://doi.org/10.1152/ajpheart.00775.2007
Article PubMed CAS Google Scholar
Dubinin M.V., Stepanova A.E., Mikheeva I.B., Igoshkina A.D., Cherepanova A.A., Talanov E.Y., Khoroshavina E.I., Belosludtsev K.N. 2024. Reduction of mitochondrial calcium overload via MKT-077-induced inhibition of glucose-regulated protein 75 alleviates skeletal muscle pathology in dystrophin-deficient mdx mice. Int. J. Mol. Sci. 25 (18), 9892. https://doi.org/10.3390/ijms25189892
Article PubMed PubMed Central CAS Google Scholar
Weisberg E.L., Koya K., Modica-Napolitano J., Li Y., Chen L.B. 1996. In vivo administration of MKT-077 causes partial yet reversible impairment of mitochondrial function. Cancer Res. 56 (3), 551–555.
Dubinin M.V., Talanov E.Y., Tenkov K.S., Starinets V.S., Mikheeva I.B., Sharapov M.G., Belosludtsev K.N. 2020. Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition. Biochim. Biophys. Acta Mol. Basis Dis. 1866 (5), 165674. https://doi.org/10.1016/j.bbadis.2020.165674
Belosludtsev K.N., Belosludtseva N.V., Kosareva E.A., Talanov E.Y., Gudkov S.V., Dubinin M.V. 2020. Itaconic acid impairs the mitochondrial function by the inhibition of complexes II and IV and induction of the permeability transition pore opening in rat liver mitochondria. Biochimie. 176, 150–157. https://doi.org/10.1016/j.biochi.2020.07.011
Article PubMed CAS Google Scholar
Pollard A.K., Craig E.L., Chakrabarti L. 2016. Mitochondrial complex I activity measured by spectrophotometry is reduced across all brain regions in ageing and more specifically in neurodegeneration. PLoS One. 11 (6), e0157405. https://doi.org/10.1371/journal.pone.0157405
Article PubMed PubMed Central CAS Google Scholar
Spinazzi M., Casarin A., Pertegato V., Salviati L., Angelini C. 2012. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7 (6), 1235–1246. https://doi.org/10.1038/nprot.2012.058
Article PubMed CAS Google Scholar
Dubinin M.V., Svinin A.O., Vedernikov A.A., Starinets V.S., Tenkov K.S., Belosludtsev K.N., Samartsev V.N. 2019. Effect of hypothermia on the functional activity of liver mitochondria of grass snake (Natrix natrix): Inhibition of succinate-fueled respiration and K+ transport, ROS-induced activation of mitochondrial permeability transition. J. Bioenerg. Biomembr. 51 (3), 219–229. https://doi.org/10.1007/s10863-019-09796-6
Article PubMed CAS Google Scholar
Gu J., Liu T., Guo R., Zhang L., Yang M. 2022. The coupling mechanism of mammalian mitochondrial complex I. Nat. Struct. Mol. Biol. 29 (2), 172–182. https://doi.org/10.1038/s41594-022-00722-w
Article PubMed CAS Google Scholar
Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. 2021. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 61 (8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
Article PubMed PubMed Central CAS Google Scholar
Trott O., Olson A.J. 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31 (2), 455–461. https://doi.org/10.1002/jcc.21334
Article PubMed PubMed Central CAS Google Scholar
Neese F., Wennmohs F., Becker U., Riplinger C. 2020. The ORCA quantum chemistry program package. J. Chem. Phys. 152 (22), 224108. https://doi.org/10.1063/5.0004608
Article PubMed CAS Google Scholar
Dubinin M. V., Mikheeva I. B., Stepanova A. E., Mikina N. V., Sushentsov D. V., Sharapov V. A., Cherepanova A. A., Loskutov V. V., Belosludtsev K. N. 2024. MKT-077 normalizes mitochondrial function and mitigates cardiac pathology in mdx mice. Biocell. 48 (12), 1815–1825. https://doi.org/10.32604/biocell.2024.058068
Kharechkina E.S., Nikiforova A.B., Belosludtsev K.N., Rokitskaya T.I., Antonenko Y.N., Kruglov A.G. 2021. Pioglitazone is a mild carrier-dependent uncoupler of oxidative phosphorylation and a modulator of mitochondrial permeability transition. Pharmaceuticals (Basel). 14 (10), 1045. https://doi.org/10.3390/ph14101045
Article PubMed CAS Google Scholar
Zorov D.B., Juhaszova M., Sollott S.J. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94 (3), 909–950. https://doi.org/10.1152/physrev.00026.2013
Article PubMed PubMed Central CAS Google Scholar
Chen Q., Vazquez E.J., Moghaddas S., Hoppel C.L., Lesnefsky E.J. 2003. Production of reactive oxygen species by mitochondria: Central role of complex III. J. Biol. Chem. 278 (38), 36 027–36 031. https://doi.org/10.1074/jbc.M304854200
Belosludtsev K.N., Dubinin M.V., Belosludtseva N.V., Mironova G.D. 2019. Mitochondrial Ca2+ transport: Mechanisms, molecular structures, and role in cells. Biochemistry. 84 (6), 593–607.
Park S.H., Baek K.H., Shin I., Shin I. 2018. Subcellular HSP70 inhibitors promote cancer cell death via different mechanisms. Cell Chem. Biol. 25 (10), 1242–1254. https://doi.org/10.1016/j.chembiol.2018.06.010
Article PubMed CAS Google Scholar
Ozaki T., Yamashita T., Ishiguro S. 2009. Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria. Biochim. Biophys. Acta. 1793 (12), 1848–1859. https://doi.org/10.1016/j.bbamcr.2009.10.002
Comments (0)