MKT-077 Suppresses the Functional Activity of Isolated Mouse Skeletal Muscle Mitochondria

Modica-Napolitano J.S., Koya K., Weisberg E., Brunelli B.T., Li Y., Chen L.B. 1996. Selective damage to carcinoma mitochondria by the rhodacyanine MKT-077. Cancer Res. 56 (3), 544–550.

PubMed  CAS  Google Scholar 

Koya K., Li Y., Wang H., Ukai T., Tatsuta N., Kawakami M., Shishido, Chen L.B. 1996. MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res. 56, 538–543.

PubMed  CAS  Google Scholar 

Chiba Y., Kubota T., Watanabe M., Matsuzaki S.W., Otani Y., Teramoto T., Matsumoto Y., Koya K., Kitajima M. 1998. MKT-077, localized lipophilic cation: Antitumor activity against human tumor xenografts serially transplanted into nude mice. Anticancer Res. 18 (2A), 1047–1052.

PubMed  CAS  Google Scholar 

Wen B., Xu K., Huang R., Jiang T., Wang J., Chen J., Chen J., He B. 2022. Preserving mitochondrial function by inhibiting GRP75 ameliorates neuron injury under ischemic stroke. Mol. Med. Rep. 25 (5), 165. https://doi.org/10.3892/mmr.2022.12681

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liang T., Hang W., Chen J., Wu Y., Wen B., Xu K., Ding B., Chen J. 2021. ApoE4 (Δ272-299) induces mitochondrial-associated membrane formation and mitochondrial impairment by enhancing GRP75-modulated mitochondrial calcium overload in neuron. Cell Biosci. 11 (1), 50. https://doi.org/10.1186/s13578-021-00563-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rousaki A., Miyata Y., Jinwal U.K., Dickey C.A., Gestwicki J.E., Zuiderweg E.R. 2011. Allosteric drugs: The interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J. Mol. Biol. 411 (3), 614–632. https://doi.org/10.1016/j.jmb.2011.06.003

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xu H., Guan N., Ren Y.L., Wei Q.J., Tao Y.H., Yang G.S., Liu X.Y., Bu D.F., Zhang Y., Zhu S.N. 2018. IP3R-Grp75-VDAC1-MCU calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an Adriamycin nephropathy rat model. BMC Nephrol. 9 (1), 140. https://doi.org/10.1186/s12882-018-0940-3

Article  CAS  Google Scholar 

Li J., Qi F., Su H., Zhang C., Zhang Q., Zhang S. 2022. GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int. J. Biol Sci. 18 (7), 2914–2931. https://doi.org/10.7150/ijbs.71571

Article  PubMed  PubMed Central  CAS  Google Scholar 

Esfahanian N., Knoblich C.D., Bowman G.A., Rezvani K. 2023. Mortalin: Protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front. Cell Dev. Biol. 11, 1028519. https://doi.org/10.3389/fcell.2023.1028519

Article  PubMed  PubMed Central  Google Scholar 

Williamson C.L., Dabkowski E.R., Dillmann W.H., Hollander J.M. 2008. Mitochondria protection from hypoxia/reoxygenation injury with mitochondria heat shock protein 70 overexpression. Am. J. Physiol. Heart Circ. Physiol. 294 (1), H249–H256. https://doi.org/10.1152/ajpheart.00775.2007

Article  PubMed  CAS  Google Scholar 

Dubinin M.V., Stepanova A.E., Mikheeva I.B., Igoshkina A.D., Cherepanova A.A., Talanov E.Y., Khoroshavina E.I., Belosludtsev K.N. 2024. Reduction of mitochondrial calcium overload via MKT-077-induced inhibition of glucose-regulated protein 75 alleviates skeletal muscle pathology in dystrophin-deficient mdx mice. Int. J. Mol. Sci. 25 (18), 9892. https://doi.org/10.3390/ijms25189892

Article  PubMed  PubMed Central  CAS  Google Scholar 

Weisberg E.L., Koya K., Modica-Napolitano J., Li Y., Chen L.B. 1996. In vivo administration of MKT-077 causes partial yet reversible impairment of mitochondrial function. Cancer Res. 56 (3), 551–555.

PubMed  CAS  Google Scholar 

Dubinin M.V., Talanov E.Y., Tenkov K.S., Starinets V.S., Mikheeva I.B., Sharapov M.G., Belosludtsev K.N. 2020. Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition. Biochim. Biophys. Acta Mol. Basis Dis. 1866 (5), 165674. https://doi.org/10.1016/j.bbadis.2020.165674

Belosludtsev K.N., Belosludtseva N.V., Kosareva E.A., Talanov E.Y., Gudkov S.V., Dubinin M.V. 2020. Itaconic acid impairs the mitochondrial function by the inhibition of complexes II and IV and induction of the permeability transition pore opening in rat liver mitochondria. Biochimie. 176, 150–157. https://doi.org/10.1016/j.biochi.2020.07.011

Article  PubMed  CAS  Google Scholar 

Pollard A.K., Craig E.L., Chakrabarti L. 2016. Mitochondrial complex I activity measured by spectrophotometry is reduced across all brain regions in ageing and more specifically in neurodegeneration. PLoS One. 11 (6), e0157405. https://doi.org/10.1371/journal.pone.0157405

Article  PubMed  PubMed Central  CAS  Google Scholar 

Spinazzi M., Casarin A., Pertegato V., Salviati L., Angelini C. 2012. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7 (6), 1235–1246. https://doi.org/10.1038/nprot.2012.058

Article  PubMed  CAS  Google Scholar 

Dubinin M.V., Svinin A.O., Vedernikov A.A., Starinets V.S., Tenkov K.S., Belosludtsev K.N., Samartsev V.N. 2019. Effect of hypothermia on the functional activity of liver mitochondria of grass snake (Natrix natrix): Inhibition of succinate-fueled respiration and K+ transport, ROS-induced activation of mitochondrial permeability transition. J. Bioenerg. Biomembr. 51 (3), 219–229. https://doi.org/10.1007/s10863-019-09796-6

Article  PubMed  CAS  Google Scholar 

Gu J., Liu T., Guo R., Zhang L., Yang M. 2022. The coupling mechanism of mammalian mitochondrial complex I. Nat. Struct. Mol. Biol. 29 (2), 172–182. https://doi.org/10.1038/s41594-022-00722-w

Article  PubMed  CAS  Google Scholar 

Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. 2021. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 61 (8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203

Article  PubMed  PubMed Central  CAS  Google Scholar 

Trott O., Olson A.J. 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31 (2), 455–461. https://doi.org/10.1002/jcc.21334

Article  PubMed  PubMed Central  CAS  Google Scholar 

Neese F., Wennmohs F., Becker U., Riplinger C. 2020. The ORCA quantum chemistry program package. J. Chem. Phys. 152 (22), 224108. https://doi.org/10.1063/5.0004608

Article  PubMed  CAS  Google Scholar 

Dubinin M. V., Mikheeva I. B., Stepanova A. E., Mikina N. V., Sushentsov D. V., Sharapov V. A., Cherepanova A. A., Loskutov V. V., Belosludtsev K. N. 2024. MKT-077 normalizes mitochondrial function and mitigates cardiac pathology in mdx mice. Biocell. 48 (12), 1815–1825. https://doi.org/10.32604/biocell.2024.058068

Article  Google Scholar 

Kharechkina E.S., Nikiforova A.B., Belosludtsev K.N., Rokitskaya T.I., Antonenko Y.N., Kruglov A.G. 2021. Pioglitazone is a mild carrier-dependent uncoupler of oxidative phosphorylation and a modulator of mitochondrial permeability transition. Pharmaceuticals (Basel). 14 (10), 1045. https://doi.org/10.3390/ph14101045

Article  PubMed  CAS  Google Scholar 

Zorov D.B., Juhaszova M., Sollott S.J. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94 (3), 909–950. https://doi.org/10.1152/physrev.00026.2013

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen Q., Vazquez E.J., Moghaddas S., Hoppel C.L., Lesnefsky E.J. 2003. Production of reactive oxygen species by mitochondria: Central role of complex III. J. Biol. Chem. 278 (38), 36 027–36 031. https://doi.org/10.1074/jbc.M304854200

Article  Google Scholar 

Belosludtsev K.N., Dubinin M.V., Belosludtseva N.V., Mironova G.D. 2019. Mitochondrial Ca2+ transport: Mechanisms, molecular structures, and role in cells. Biochemistry. 84 (6), 593–607.

PubMed  CAS  Google Scholar 

Park S.H., Baek K.H., Shin I., Shin I. 2018. Subcellular HSP70 inhibitors promote cancer cell death via different mechanisms. Cell Chem. Biol. 25 (10), 1242–1254. https://doi.org/10.1016/j.chembiol.2018.06.010

Article  PubMed  CAS  Google Scholar 

Ozaki T., Yamashita T., Ishiguro S. 2009. Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria. Biochim. Biophys. Acta. 1793 (12), 1848–1859. https://doi.org/10.1016/j.bbamcr.2009.10.002

Comments (0)

No login
gif