Comparison of Functional and Proliferative Activity of hTERT-NK and iCasp9-NK Cells

Damania B., Kenney S.C., Raab-traub N. 2023. Epstein–Barr virus (EBV): Biology and clinical disease. Cell. 185 (20), 3652–3670. https://doi.org/10.1016/j.cell.2022.08.026

Article  CAS  Google Scholar 

Smit G., Wallis G., Griffiths P. 2019. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev. Med. Virol. 29 (3), 1–6. https://doi.org/10.1002/rmv.2034

Article  Google Scholar 

Müller-Durovic B., Grählert J., Devine O.P., Akbar A.N., Hess C. 2019. CD56-negative NK cells with impaired effector function expand in CMV and EBV co-infected healthy donors with age. Aging (Albany N.Y.). 11 (2), 724–740. https://doi.org/10.18632/aging.101774

Article  Google Scholar 

Png Y.T., Zhi A., Yang Y., Lee M.Y., Jahn M., Chua M., Lim C.M. 2021. The Role of NK cells in EBV infection and EBV-associated. Viruses. 13 (2), 1–22. https://doi.org/10.3390/v13020300

Article  CAS  Google Scholar 

Cobbs C. 2019. ScienceDirect cytomegalovirus is a tumor-associated virus: Armed and dangerous. Curr Opin Virol. 39, 49–59. https://doi.org/10.1016/j.coviro.2019.08.003

Article  PubMed  Google Scholar 

Park K.H., Ryu J.H., Bae H., Yun S., Jang J.H., Han K., Cho B.S., Kim H., Lee H., Oh E. 2020. Delayed NK cell reconstitution and reduced NK activity increased the risks of CMV disease in allogeneic-hematopoietic stem cell transplantation. Int. J. Mol. Sci. 21 (10), 3663. https://doi.org/10.3390/ijms21103663

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kovalenko E.I., Streltsova M.A. 2016. Adaptive properties of natural killer cells – lymphocytes of innate immunity. Bioorganicheskaya Khimia (Rus.). 42 (6), 649–667. https://doi.org/10.7868/s0132342316060063

Article  Google Scholar 

Zvereva M.I., Shcherbakova D.M., Dontsova O.A. 2010. Telomerase: Structure, functions, and activity regulation. Biochem. 75 (13), 1563–1583. https://doi.org/10.1134/S0006297910130055

Article  CAS  Google Scholar 

Fujisaki H., Kakuda H., Imai C., Mullighan C.G., Campana D. 2009. Replicative potential of human natural killer cells. Br. J. Haematol. 145 (5), 606–613. https://doi.org/10.1111/j.1365-2141.2009.07667.x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Romaniuk A., Paszel-Jaworska A., Totoń E., Lisiak N., Hołysz H., Królak A., Grodecka-Gazdecka S., Rubiś B. 2019. The non-canonical functions of telomerase: To turn off or not to turn off. Mol. Biol. Rep. 46 (1), 1401–1411. https://doi.org/10.1007/s11033-018-4496-x

Article  PubMed  CAS  Google Scholar 

Schafer K.A. 1998. Veterinary pathology online. Vet. Pathol. 35(6), 461–478. https://doi.org/10.1177/030098589803500601

Article  PubMed  CAS  Google Scholar 

Gotthardt D., Trifinopoulos J., Sexl V., Putz E.M. 2019. JAK/STAT Cytokine signaling at the crossroad of NK cell development and maturation. Front. Immunol. 10, 2590. https://doi.org/10.3389/fimmu.2019.02590

Article  PubMed  PubMed Central  CAS  Google Scholar 

Erokhina S.A., Streltsova M.A., Kanevskiy L.M., Telford W.G., Sapozhnikov A.M., Kovalenko E.I. 2018. HLA-DR+ NK cells are mostly characterized by less mature phenotype and high functional activity. Immunol. Cell Biol. 96 (2), 212–228. https://doi.org/10.1111/imcb.1032

Article  PubMed  CAS  Google Scholar 

Community T.G. 2024. The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update. Nucleic Acids Res. 52 (W1), 83–94. https://doi.org/10.1093/nar/gkae410

Article  Google Scholar 

Love M.I., Huber W., Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (12), 1–21. https://doi.org/10.1186/s13059-014-0550-8

Article  CAS  Google Scholar 

Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. 2017. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucl. Acids Res. 45 (D1), 353–361. https://doi.org/10.1093/nar/gkw1092

Article  CAS  Google Scholar 

Herbert B., Hochreiter A.E., Wright W.E., Shay J.W. 2006. Nonradioactive detection of telomerase activity using the telomeric repeat amplification protocol. Nat. Protoc. 1 (3), 1583–1590. https://doi.org/10.1038/nprot.2006.239

Article  PubMed  CAS  Google Scholar 

Palamarchuk A.I., Kovalenko E.I., Streltsova M.A. 2024. The hTERT and iCasp9 transgenes affect EOM-ES and T-BET levels in NK cells and the introduction of both genes improves NK cell proliferation in response to IL2 and IL15 stimulation. Biomedicines. 12(3), 650–671. https://doi.org/10.3390/biomedicines12030650

PubMed  PubMed Central  CAS  Google Scholar 

Engeland K. 2022. Cell cycle regulation: p53-p21-RB signalling. CDDpress. 29 (5), 946–960. https://doi.org/10.1038/s41418-022-00988-z

Article  CAS  Google Scholar 

Sansam C.L., Cruz N.M., Danielian P.S., Amsterdam A., Lau M.L., Hopkins N., Lees J.A. 2010. A vertebrate gene, ticrr, is an essential checkpoint and replication regulator. Genes Dev. 24 (2), 183–194. https://doi.org/10.1101/gad.1860310

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ahmed A., Shamsi A., Mohammad T., Mustafa G., Asimul H., Imtaiyaz I. 2021. Aurora B kinase: A potential drug target for cancer therapy. J. Cancer Res. Clin. Oncol. 147 (8), 2187–2198. https://doi.org/10.1007/s00432-021-03669-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cheeseman I.M. 2014. The kinetochore. Cold Spring Harb. Lab. Press. 6 (7), 1–18. https://doi.org/10.1101/cshperspect.a015826

Article  Google Scholar 

Golov A.K., Gavrilov A.A. 2024. Cohesin complex: Structure and principles of interaction with DNA. Biochem. 89 (4), 585–600. https://doi.org/10.1134/S0006297924040011

Article  CAS  Google Scholar 

Aguilera P., López-contreras A.J. 2023. Trends in gGenetics ATRX, a guardian of chromatin. Trends Genet, 39 (6), 505–519. https://doi.org/10.1016/j.tig.2023.02.009

Article  PubMed  CAS  Google Scholar 

Manuscript A. 2011. Negative regulation of CHK2 activity by protein phosphatase 2A is modulated by DNA damage. Cell Cycle. 9 (4), 736–747. https://doi.org/10.4161/cc.9.4.10613

Article  Google Scholar 

Marongiu L., Allgayer H. 2022. Viruses in colorectal cancer. Mol. Oncol. 16 (7), 1423–1450. https://doi.org/10.1002/1878-0261.13100

Article  PubMed  CAS  Google Scholar 

Boudreau J.E., Hsu K.C. 2018. natural killer cell education and the response to infection and cancer therapy: Stay tuned. Trends Immunol. 39 (3), 222–239. https://doi.org/10.1016/j.it.2017.12.001

Article  PubMed  PubMed Central  CAS  Google Scholar 

Siegler E.L., Zhu Y., Wang P., Yang L. 2018. Off-the-shelf CAR-NK cells for cancer immunotherapy. Cell Stem Cell. 23 (2), 160–161. https://doi.org/10.1016/j.stem.2018.07.007

Article  PubMed  CAS  Google Scholar 

Palamarchuk A.I., Kovalenko E.I., Streltsova M.A. 2023. Multiple actions of telomerase reverse transcriptase in cell death regulation. Biomed. Rewiev. 11 (4), 1091. https://doi.org/10.3390/biomedicines11041091

Article  CAS  Google Scholar 

Yan J., Zhou Y., Chen D.X., Li L.L., Yang X., You Y., Ling X. 2015. Effects of mitochondrial translocation of telomerase on drug resistance in hepatocellular carcinoma cells. J. Cancer. 6 (2), 151–159. https://doi.org/10.7150/jca.10419

Article  PubMed  PubMed Central  Google Scholar 

Ma Y., Li X., Kuang E. 2016. Viral evasion of natural killer cell activation. Viruses. 8 (4), 95. https://doi.org/10.3390/v8040095

Comments (0)

No login
gif