Prediction of the Interaction between NK Cell Receptor KIR2DS4 and HLA-C*05-Peptide Complex

Björkström N.K., Strunz B., Ljunggren H.G. 2021. Natural killer cells in antiviral immunity. Nat. Rev. Immunol. 22 (2), 112–123. https://doi.org/10.1038/s41577-021-00558-3

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sivori S., Vacca P., Del Zotto G., Munari E., Mingari M.C., Moretta L. 2019. Human NK cells: Surface receptors, inhibitory checkpoints, and translational applications. Cell Mol. Immunol. 16 (5), 430–441. https://doi.org/10.1038/s41423-019-0206-4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gumá M., Budt M., Sáez A., Brckalo T., Hengel H., Angulo A., López-Botet M. 2006. Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood. 107 (9), 3624–3631. https://doi.org/10.1182/BLOOD-2005-09-3682

Article  PubMed  Google Scholar 

Hammer Q., Rückert T., Borst E.M., Dunst J., Haubner A., Durek P., Heinrich F., Gasparoni G., Babic M., Tomic A., Pietra G., Nienen M., Blau I.W., Hofmann J., Na I.K., Prinz I., Koenecke C., Hemmati P., Babel N., Arnold R., Walter J., Thurley K., Mashreghi M.F., Messerle M., Romagnani C. 2018. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells article. Nat. Immunol. 19 (5), 453–463. https://doi.org/10.1038/S41590-018-0082-6

Article  PubMed  CAS  Google Scholar 

Ustiuzhanina M.O., Streltsova M.A., Timofeev N.D., Kryukov M.A., Chudakov D.M., Kovalenko E.I. 2024. Autologous T-cell-free antigen presentation system unveils hCMV-specific NK cell response. Cells. 13 (6), 530. https://doi.org/10.3390/CELLS13060530

Article  PubMed  PubMed Central  CAS  Google Scholar 

Heatley S.L., Pietra G., Lin J., Widjaja J.M.L., Harpur C.M., Lester S., Rossjohn J., Szer J., Schwarer A., Bradstock K., Bardy P.G., Mingari M.C., Moretta L., Sullivan L.C., Brooks A.G. 2013. Polymorphism in human cytomegalovirus UL40 impacts on recognition of human leukocyte antigen-E (HLA-E) by natural killer cells. J. Biol. Chem. 288 (12), 8679–8690. https://doi.org/10.1074/JBC.M112.409672

Article  PubMed  PubMed Central  CAS  Google Scholar 

Goodier M.R., Rodriguez-Galan A., Lusa C., Nielsen C.M., Darboe A., Moldoveanu A.L., White M.J., Behrens R., Riley E.M. 2016. Influenza vaccination generates cytokine-induced memory-like NK cells: Impact of human cytomegalovirus infection. J. Immunol. 197 (1), 313–325. https://doi.org/10.4049/JIMMUNOL.1502049

Article  PubMed  PubMed Central  CAS  Google Scholar 

Peppa D., Pedroza-Pacheco I., Pellegrino P., Williams I., Maini M.K., Borrow P. 2018. Adaptive reconfiguration of natural killer cells in HIV-1 infection. Front. Immunol. 9, 474. https://doi.org/10.3389/FIMMU.2018.00474/FULL

Article  PubMed  PubMed Central  Google Scholar 

Bruijnesteijn J., de Groot N.G., Bontrop R.E. 2020. The genetic mechanisms driving diversification of the KIR gene cluster in primates. Front. Immunol. 11, 582804. https://doi.org/10.3389/fimmu.2020.582804

Article  PubMed  PubMed Central  CAS  Google Scholar 

IPD-KIR Database, https://www.ebi.ac.uk/ipd/kir/about/statistics/. Accessed 8 Nov 2023.

Stewart C.A., Laugier-Anfossi F., Vély F., Saulquin X., Riedmuller J., Tisserant A., Gauthiers L., Romagné F., Ferracci G., Arosa F.A., Moretta A., Sun P.D., Ugolini S., Vivier E. 2005. Recognition of peptide–MHC class I complexes by activating killer immunoglobulin-like receptors. Proc. Natl. Acad. Sci. USA. 102 (37), 13224. https://doi.org/10.1073/PNAS.0503594102

Article  PubMed  PubMed Central  CAS  Google Scholar 

Boylngton J.C., Motykat S.A., Schuckt P., Brooks A.G., Sun P.D. 2000. Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature. 405 (6786), 537–543. https://doi.org/10.1038/35014520

Article  Google Scholar 

Yang Y., Bai H., Wu Y., Chen P., Zhou J., Lei J., Ye X., Brown A.J., Zhou X., Shu T., Chen Y., Wei P., Yin L. 2022. Activating receptor KIR2DS2 bound to HLA-C1 reveals the novel recognition features of activating receptor. Immunology. 165 (3), 341–354. https://doi.org/10.1111/IMM.13439

Article  PubMed  CAS  Google Scholar 

Chapel A., Garcia-Beltran W.F., Hölzemer A., Ziegler M., Lunemann S., Martrus G., Altfeld M. 2017. Peptide-specific engagement of the activating NK cell receptor KIR2DS1. Sci. Rep. 7 (1), 2414. https://doi.org/10.1038/S41598-017-02449-X

Article  PubMed  PubMed Central  Google Scholar 

O’Connor G.M., Vivian J.P., Gostick E., Pymm P., Lafont B.A.P., Price D.A., Rossjohn J., Brooks A.G., McVicar D.W. 2015. Peptide-dependent recognition of HLA-B*57:01 by KIR3DS1. J. Virol. 89 (10), 5213. https://doi.org/10.1128/JVI.03586-14

Article  PubMed  PubMed Central  CAS  Google Scholar 

Naiyer M.M., Cassidy S.A., Magri A., Cowton V., Chen K., Mansour S., Kranidioti H., Mbiribindi B., Rettman P., Harris S., Fanning L.J., Mulder A., Claas F.H.J., Davidson A.D., Patel A.H., Purbhoo M.A., Khakoo S.I. 2017. KIR2DS2 recognizes conserved peptides derived from viral helicases in the context of HLA-C. Sci. Immunol. 2 (15), 5296. https://doi.org/10.1126/SCIIMMUNOL.AAL5296

Article  Google Scholar 

Sim M.J.W., Rajagopalan S., Altmann D.M., Boyton R.J., Sun P.D., Long E.O. 2019. Human NK cell receptor KIR2DS4 detects a conserved bacterial epitope presented by HLA-C. Proc. Natl. Acad. Sci. USA. 116 (26), 12964–12973. https://doi.org/10.1073/PNAS.1903781116

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bateman A., Martin M.J., O’Donovan C., Magrane M., Alpi E., Antunes R., Bely B., Bingley M., Bonilla C., Britto R., Bursteinas B., Bye-AJee H., Cowley A., Da Silva A., De Giorgi M., Dogan T., Fazzini F., Castro L.G., Figueira L., Garmiri P., Georghiou G., Gonzalez D., Hatton-Ellis E., Li W., Liu W., Lopez R., Luo J., Lussi Y., MacDougall A., Nightingale A., Palka B., Pichler K., Poggioli D., Pundir S., Pureza L., Qi G., Rosanoff S., Saidi R., Sawford T., Shypitsyna A., Speretta E., Turner E., Tyagi N., Volynkin V., Wardell T., Warner K., Watkins X., Zaru R., Zellner H., Xenarios I., Bougueleret L., Bridge A., Poux S., Redaschi N., Aimo L., ArgoudPuy G., Auchincloss A., Axelsen K., Bansal P., Baratin D., Blatter M.C., Boeckmann B., Bolleman J., Boutet E., Breuza L., Casal-Casas C., De Castro E., Coudert E., Cuche B., Doche M., Dornevil D., Duvaud S., Estreicher A., Famiglietti L., Feuermann M., Gasteiger E., Gehant S., Gerritsen V., Gos A., Gruaz-Gumowski N., Hinz U., Hulo C., Jungo F., Keller G., Lara V., Lemercier P., Lieberherr D., Lombardot T., Martin X., Masson P., Morgat A., Neto T., Nouspikel N., Paesano S., Pedruzzi I., Pilbout S., Pozzato M., Pruess M., Rivoire C., Roechert B., Schneider M., Sigrist C., Sonesson K., Staehli S., Stutz A., Sundaram S., Tognol-li M., Verbregue L., Veuthey A.L., Wu C.H., Arighi C.N., Arminski L., Chen C., Chen Y., Garavelli J.S., Huang H., Laiho K., McGarvey P., Natale D.A., Ross K., Vinayaka C.R., Wang Q., Wang Y., Yeh L.S., Zhang J. 2017. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45 (D1), D158–D169. https://doi.org/10.1093/NAR/GKW1099

Article  CAS  Google Scholar 

Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A.J., Bambrick J., Bodenstein S.W., Evans D.A., Hung C.C., O’Neill M., Reiman D., Tunyasuvunakool K., Wu Z., Žemgulytė A., Arvaniti E., Beattie C., Bertolli O., Bridgland A., Cherepanov A., Congreve M., Cowen-Rivers A.I., Cowie A., Figurnov M., Fuchs F.B., Gladman H., Jain R., Khan Y.A., Low C.M.R., Perlin K., Potapenko A., Savy P., Singh S., Stecula A., Thillaisundaram A., Tong C., Yakneen S., Zhong E.D., Zielinski M., Žídek A., Bapst V., Kohli P., Jaderberg M., Hassabis D., Jumper J.M. 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 630 (8016), 493–500. https://doi.org/10.1038/s41586-024-07487-w

Article  PubMed  PubMed Central  CAS  Google Scholar 

García-Nafría J., Tate C.G. 2021. Structure determination of GPCRs: Cryo-EM compared with X-ray crystallography. Biochem. Soc. Trans. 49 (5), 2345–2355. https://doi.org/10.1042/BST20210431

Article  PubMed  PubMed Central  Google Scholar 

Graef T., Moesta A.K., Norman P.J., Abi-Rached L., Vago L., Older Aguilar A.M., Gleimer M., Hammond J.A., Guethlein L.A., Bushnell D.A., Robinson P.J., Parham P. 2009. KIR2DS4 is a product of gene conversion with KIR3DL2 that introduced specificity for HLA-A*11 while diminishing avidity for HLA-C. J. Exp. Med. 206 (11), 2557. https://doi.org/10.1084/JEM.20091010

Article  PubMed  PubMed Central  CAS  Google Scholar 

Saulquin X., Gastinel L.N., Vivier E. 2003. Crystal structure of the human natural killer cell activating receptor KIR2DS2 (CD158j). J. Exper. Med. 197 (7), 933–938. https://doi.org/10.1084/JEM.20021624

Article  CAS  Google Scholar 

Fan Q.R., Long E.O., Wiley D.C. 2001. Crystal structure of the human natural killer cell inhibitory receptor KIR2DL1–HLA-Cw4 complex. Nat. Immunol. 2 (5), 452–460. https://doi.org/10.1038/87766

Article  PubMed  CAS  Google Scholar 

Snyder G.A., Brooks A.G., Sun P.D. 1999. Crystal structure of the HLA-Cw3 allotype-specific killer cell inhibitory receptor KIR2DL2. Proc. Natl. Acad. Sci. USA. 96 (7), 3864–3869. https://doi.org/10.1073/PNAS.96.7.3864

Article  PubMed  PubMed Central  CAS  Google Scholar 

Moradi S., Stankovic S., O’Connor G.M., Pymm P., MacLachlan B.J., Faoro C., Retière C., Sullivan L.C., Saunders P.M., Widjaja J., Cox-Livingstone S., Rossjohn J., Brooks A.G., Vivian J.P. 2021. Structural plasticity of KIR2DL2 and KIR2DL3 enables altered docking geometries atop HLA-C. Nat. Commun. 12 (1), 1–11. https://doi.org/10.1038/s41467-021-22359-x

Article  CAS  Google Scholar 

Comments (0)

No login
gif