Björkström N.K., Strunz B., Ljunggren H.G. 2021. Natural killer cells in antiviral immunity. Nat. Rev. Immunol. 22 (2), 112–123. https://doi.org/10.1038/s41577-021-00558-3
Article PubMed PubMed Central CAS Google Scholar
Sivori S., Vacca P., Del Zotto G., Munari E., Mingari M.C., Moretta L. 2019. Human NK cells: Surface receptors, inhibitory checkpoints, and translational applications. Cell Mol. Immunol. 16 (5), 430–441. https://doi.org/10.1038/s41423-019-0206-4
Article PubMed PubMed Central CAS Google Scholar
Gumá M., Budt M., Sáez A., Brckalo T., Hengel H., Angulo A., López-Botet M. 2006. Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood. 107 (9), 3624–3631. https://doi.org/10.1182/BLOOD-2005-09-3682
Hammer Q., Rückert T., Borst E.M., Dunst J., Haubner A., Durek P., Heinrich F., Gasparoni G., Babic M., Tomic A., Pietra G., Nienen M., Blau I.W., Hofmann J., Na I.K., Prinz I., Koenecke C., Hemmati P., Babel N., Arnold R., Walter J., Thurley K., Mashreghi M.F., Messerle M., Romagnani C. 2018. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells article. Nat. Immunol. 19 (5), 453–463. https://doi.org/10.1038/S41590-018-0082-6
Article PubMed CAS Google Scholar
Ustiuzhanina M.O., Streltsova M.A., Timofeev N.D., Kryukov M.A., Chudakov D.M., Kovalenko E.I. 2024. Autologous T-cell-free antigen presentation system unveils hCMV-specific NK cell response. Cells. 13 (6), 530. https://doi.org/10.3390/CELLS13060530
Article PubMed PubMed Central CAS Google Scholar
Heatley S.L., Pietra G., Lin J., Widjaja J.M.L., Harpur C.M., Lester S., Rossjohn J., Szer J., Schwarer A., Bradstock K., Bardy P.G., Mingari M.C., Moretta L., Sullivan L.C., Brooks A.G. 2013. Polymorphism in human cytomegalovirus UL40 impacts on recognition of human leukocyte antigen-E (HLA-E) by natural killer cells. J. Biol. Chem. 288 (12), 8679–8690. https://doi.org/10.1074/JBC.M112.409672
Article PubMed PubMed Central CAS Google Scholar
Goodier M.R., Rodriguez-Galan A., Lusa C., Nielsen C.M., Darboe A., Moldoveanu A.L., White M.J., Behrens R., Riley E.M. 2016. Influenza vaccination generates cytokine-induced memory-like NK cells: Impact of human cytomegalovirus infection. J. Immunol. 197 (1), 313–325. https://doi.org/10.4049/JIMMUNOL.1502049
Article PubMed PubMed Central CAS Google Scholar
Peppa D., Pedroza-Pacheco I., Pellegrino P., Williams I., Maini M.K., Borrow P. 2018. Adaptive reconfiguration of natural killer cells in HIV-1 infection. Front. Immunol. 9, 474. https://doi.org/10.3389/FIMMU.2018.00474/FULL
Article PubMed PubMed Central Google Scholar
Bruijnesteijn J., de Groot N.G., Bontrop R.E. 2020. The genetic mechanisms driving diversification of the KIR gene cluster in primates. Front. Immunol. 11, 582804. https://doi.org/10.3389/fimmu.2020.582804
Article PubMed PubMed Central CAS Google Scholar
IPD-KIR Database, https://www.ebi.ac.uk/ipd/kir/about/statistics/. Accessed 8 Nov 2023.
Stewart C.A., Laugier-Anfossi F., Vély F., Saulquin X., Riedmuller J., Tisserant A., Gauthiers L., Romagné F., Ferracci G., Arosa F.A., Moretta A., Sun P.D., Ugolini S., Vivier E. 2005. Recognition of peptide–MHC class I complexes by activating killer immunoglobulin-like receptors. Proc. Natl. Acad. Sci. USA. 102 (37), 13224. https://doi.org/10.1073/PNAS.0503594102
Article PubMed PubMed Central CAS Google Scholar
Boylngton J.C., Motykat S.A., Schuckt P., Brooks A.G., Sun P.D. 2000. Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature. 405 (6786), 537–543. https://doi.org/10.1038/35014520
Yang Y., Bai H., Wu Y., Chen P., Zhou J., Lei J., Ye X., Brown A.J., Zhou X., Shu T., Chen Y., Wei P., Yin L. 2022. Activating receptor KIR2DS2 bound to HLA-C1 reveals the novel recognition features of activating receptor. Immunology. 165 (3), 341–354. https://doi.org/10.1111/IMM.13439
Article PubMed CAS Google Scholar
Chapel A., Garcia-Beltran W.F., Hölzemer A., Ziegler M., Lunemann S., Martrus G., Altfeld M. 2017. Peptide-specific engagement of the activating NK cell receptor KIR2DS1. Sci. Rep. 7 (1), 2414. https://doi.org/10.1038/S41598-017-02449-X
Article PubMed PubMed Central Google Scholar
O’Connor G.M., Vivian J.P., Gostick E., Pymm P., Lafont B.A.P., Price D.A., Rossjohn J., Brooks A.G., McVicar D.W. 2015. Peptide-dependent recognition of HLA-B*57:01 by KIR3DS1. J. Virol. 89 (10), 5213. https://doi.org/10.1128/JVI.03586-14
Article PubMed PubMed Central CAS Google Scholar
Naiyer M.M., Cassidy S.A., Magri A., Cowton V., Chen K., Mansour S., Kranidioti H., Mbiribindi B., Rettman P., Harris S., Fanning L.J., Mulder A., Claas F.H.J., Davidson A.D., Patel A.H., Purbhoo M.A., Khakoo S.I. 2017. KIR2DS2 recognizes conserved peptides derived from viral helicases in the context of HLA-C. Sci. Immunol. 2 (15), 5296. https://doi.org/10.1126/SCIIMMUNOL.AAL5296
Sim M.J.W., Rajagopalan S., Altmann D.M., Boyton R.J., Sun P.D., Long E.O. 2019. Human NK cell receptor KIR2DS4 detects a conserved bacterial epitope presented by HLA-C. Proc. Natl. Acad. Sci. USA. 116 (26), 12964–12973. https://doi.org/10.1073/PNAS.1903781116
Article PubMed PubMed Central CAS Google Scholar
Bateman A., Martin M.J., O’Donovan C., Magrane M., Alpi E., Antunes R., Bely B., Bingley M., Bonilla C., Britto R., Bursteinas B., Bye-AJee H., Cowley A., Da Silva A., De Giorgi M., Dogan T., Fazzini F., Castro L.G., Figueira L., Garmiri P., Georghiou G., Gonzalez D., Hatton-Ellis E., Li W., Liu W., Lopez R., Luo J., Lussi Y., MacDougall A., Nightingale A., Palka B., Pichler K., Poggioli D., Pundir S., Pureza L., Qi G., Rosanoff S., Saidi R., Sawford T., Shypitsyna A., Speretta E., Turner E., Tyagi N., Volynkin V., Wardell T., Warner K., Watkins X., Zaru R., Zellner H., Xenarios I., Bougueleret L., Bridge A., Poux S., Redaschi N., Aimo L., ArgoudPuy G., Auchincloss A., Axelsen K., Bansal P., Baratin D., Blatter M.C., Boeckmann B., Bolleman J., Boutet E., Breuza L., Casal-Casas C., De Castro E., Coudert E., Cuche B., Doche M., Dornevil D., Duvaud S., Estreicher A., Famiglietti L., Feuermann M., Gasteiger E., Gehant S., Gerritsen V., Gos A., Gruaz-Gumowski N., Hinz U., Hulo C., Jungo F., Keller G., Lara V., Lemercier P., Lieberherr D., Lombardot T., Martin X., Masson P., Morgat A., Neto T., Nouspikel N., Paesano S., Pedruzzi I., Pilbout S., Pozzato M., Pruess M., Rivoire C., Roechert B., Schneider M., Sigrist C., Sonesson K., Staehli S., Stutz A., Sundaram S., Tognol-li M., Verbregue L., Veuthey A.L., Wu C.H., Arighi C.N., Arminski L., Chen C., Chen Y., Garavelli J.S., Huang H., Laiho K., McGarvey P., Natale D.A., Ross K., Vinayaka C.R., Wang Q., Wang Y., Yeh L.S., Zhang J. 2017. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45 (D1), D158–D169. https://doi.org/10.1093/NAR/GKW1099
Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A.J., Bambrick J., Bodenstein S.W., Evans D.A., Hung C.C., O’Neill M., Reiman D., Tunyasuvunakool K., Wu Z., Žemgulytė A., Arvaniti E., Beattie C., Bertolli O., Bridgland A., Cherepanov A., Congreve M., Cowen-Rivers A.I., Cowie A., Figurnov M., Fuchs F.B., Gladman H., Jain R., Khan Y.A., Low C.M.R., Perlin K., Potapenko A., Savy P., Singh S., Stecula A., Thillaisundaram A., Tong C., Yakneen S., Zhong E.D., Zielinski M., Žídek A., Bapst V., Kohli P., Jaderberg M., Hassabis D., Jumper J.M. 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 630 (8016), 493–500. https://doi.org/10.1038/s41586-024-07487-w
Article PubMed PubMed Central CAS Google Scholar
García-Nafría J., Tate C.G. 2021. Structure determination of GPCRs: Cryo-EM compared with X-ray crystallography. Biochem. Soc. Trans. 49 (5), 2345–2355. https://doi.org/10.1042/BST20210431
Article PubMed PubMed Central Google Scholar
Graef T., Moesta A.K., Norman P.J., Abi-Rached L., Vago L., Older Aguilar A.M., Gleimer M., Hammond J.A., Guethlein L.A., Bushnell D.A., Robinson P.J., Parham P. 2009. KIR2DS4 is a product of gene conversion with KIR3DL2 that introduced specificity for HLA-A*11 while diminishing avidity for HLA-C. J. Exp. Med. 206 (11), 2557. https://doi.org/10.1084/JEM.20091010
Article PubMed PubMed Central CAS Google Scholar
Saulquin X., Gastinel L.N., Vivier E. 2003. Crystal structure of the human natural killer cell activating receptor KIR2DS2 (CD158j). J. Exper. Med. 197 (7), 933–938. https://doi.org/10.1084/JEM.20021624
Fan Q.R., Long E.O., Wiley D.C. 2001. Crystal structure of the human natural killer cell inhibitory receptor KIR2DL1–HLA-Cw4 complex. Nat. Immunol. 2 (5), 452–460. https://doi.org/10.1038/87766
Article PubMed CAS Google Scholar
Snyder G.A., Brooks A.G., Sun P.D. 1999. Crystal structure of the HLA-Cw3 allotype-specific killer cell inhibitory receptor KIR2DL2. Proc. Natl. Acad. Sci. USA. 96 (7), 3864–3869. https://doi.org/10.1073/PNAS.96.7.3864
Article PubMed PubMed Central CAS Google Scholar
Moradi S., Stankovic S., O’Connor G.M., Pymm P., MacLachlan B.J., Faoro C., Retière C., Sullivan L.C., Saunders P.M., Widjaja J., Cox-Livingstone S., Rossjohn J., Brooks A.G., Vivian J.P. 2021. Structural plasticity of KIR2DL2 and KIR2DL3 enables altered docking geometries atop HLA-C. Nat. Commun. 12 (1), 1–11. https://doi.org/10.1038/s41467-021-22359-x
Comments (0)