Formation of Pores in Membranes Asymmetrical in Lipid Composition of Monolayers

Puc M., Flisar K., Reberšek S., Miklavčič D. 2001. Electroporator for in vitro cell permeabilization. Radiol. Oncol. 35, 203–207.

Google Scholar 

Mir L.M. 2001. Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry. 53, 1–10.

PubMed  Google Scholar 

Potter H. 1989. Molecular genetic applications of electroporation. In: Electroporation and electrofusion in cell biology. Eds. Neumann E., Sowers A.E., Jordan C.A. New York and London: Plenum Press, p. 331–342.

Pavlov R.V., Akimov S.A., Dashinimaev E.B., Bashkirov P.V. 2024. Boosting lipofection efficiency through enhanced membrane fusion mechanisms. Int. J. Mol. Sci. 25, 13540.

PubMed  PubMed Central  Google Scholar 

Pérez-Peinado C., Dias S.A., Domingues M.M., Benfield A.H., Freire J.M., Rádis-Baptista G., Gaspar D., Castanho M.A.R.B., Craik D.J., Henriques S.T., Veiga A.S., Andreu D. 2018. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn (15–34), antimicrobial peptides from rattlesnake venom. J. Biol. Chem. 293, 1536–1549.

PubMed  Google Scholar 

Shipunova V.O., Komedchikova E.N., Kotelnikova P.A., Nikitin M.P., Deyev S.M. 2023. Targeted two-step delivery of oncotheranostic nano-PLGA for HER2-positive tumor imaging and therapy in vivo: Improved effectiveness compared to one-step strategy. Pharmaceutics. 15, 833.

PubMed  PubMed Central  Google Scholar 

Novoselova M., Chernyshev V.S., Schulga A., Konovalova E.V., Chuprov-Netochin R.N., Abakumova T.O., German S., Shipunova V.O., Mokrousov M.D., Prikhozhdenko E., Bratashov D.N., Bogorodskiy A., Grishin O., Kosolobov S.S., Khlebtsov B.N., Inozemtseva O., Zatsepin T.S., Deyev S.M., Gorin D.A. 2022. Effect of surface modification of multifunctional nanocomposite drug delivery carriers with DARPin on their biodistribution in vitro and in vivo. ACS Appl. Bio Materials. 5, 2976–2989.

Google Scholar 

Rathinakumar R., Wimley W.C. 2008. Biomolecular engineering by combinatorial design and high-throughput screening: Small, soluble peptides that permeabilize membranes. J. Am. Chem. Soc. 130, 9849–9858.

PubMed  PubMed Central  Google Scholar 

Guha S., Ghimire J., Wu E., Wimley W.C. 2019. Mechanistic landscape of membrane-permeabilizing peptides. Chem. Rev. 119, 6040–6085.

PubMed  PubMed Central  Google Scholar 

Singer S.J., Nicolson G.L. 1972. The fluid mosaic model of the structure of cell membranes: Cell membranes are viewed as two-dimensional solutions of oriented globular proteins and lipids. Science. 175, 720–731.

PubMed  Google Scholar 

Ingólfsson H.I., Melo M.N., Van Eerden F.J., Arnarez C., Lopez C.A., Wassenaar T.A., Periole X., de Vries A.H., Tieleman D.P., Marrink S.J. 2014. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14 554–14 559.

Google Scholar 

Ingólfsson H.I., Carpenter T.S., Bhatia H., Bremer P.T., Marrink S.J., Lightstone F.C. 2017. Computational lipidomics of the neuronal plasma membrane. Biophys. J. 113, 2271–2280.

PubMed  PubMed Central  Google Scholar 

Verkleij A.J., Zwaal R.F., Roelofsen B., Comfurius P., Kastelijn D., van Deenen L.L. 1973. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta 323, 178–193.

PubMed  Google Scholar 

Bretscher M.S. 1972. Asymmetrical lipid bilayer structure for biological membranes. Nature New Biol. 236, 11–12.

PubMed  Google Scholar 

Hsieh M.K., Klauda J.B. 2021. Leaflet asymmetry modeling in the lipid composition of Escherichia coli cytoplasmic membranes. J. Phys. Chem. B 126, 184–196.

PubMed  Google Scholar 

Parvez F., Alam J.M., Dohra H., Yamazaki M. 2018. Elementary processes of antimicrobial peptide PGLa-induced pore formation in lipid bilayers. Biochim. Biophys. Acta. 1860, 2262–2271.

Google Scholar 

Pfeffermann J., Eicher B., Boytsov D., Hannesschlaeger C., Galimzyanov T.R., Glasnov T.N., Pabst G., Akimov S.A., Pohl P. 2021. Photoswitching of model ion channels in lipid bilayers. J. Photochem. Photobiol. B 224, 112320.

PubMed  Google Scholar 

Huang Y. 2022. Assembly methods for asymmetric lipid and polymer-lipid vesicles. Emerg. Top. Life Sci. 6, 609–617.

PubMed  Google Scholar 

London E. 2019. Membrane structure-function insights from asymmetric lipid vesicles. Acc. Chem. Res. 52, 2382–2391.

PubMed  PubMed Central  Google Scholar 

Kamiya K., Kawano R., Osaki T., Akiyoshi K., Takeuchi S. 2016. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes. Nat. Chem. 8, 881–889.

PubMed  Google Scholar 

Kakuda S., Li B., London E. 2021. Preparation and utility of asymmetric lipid vesicles for studies of perfringolysin O-lipid interactions. Meth. Enzymol. 649, 253–276.

Google Scholar 

Kirby C., Green C. 1977. Transmembrane migration (“flip-flop”) of cholesterol in erythrocyte membranes. Biochem. J. 168, 575–577.

PubMed  PubMed Central  Google Scholar 

Hasan M., Karal M.A.S., Levadnyy V., Yamazaki M. 2018. Mechanism of initial stage of pore formation induced by antimicrobial peptide magainin 2. Langmuir. 34, 3349–3362.

PubMed  Google Scholar 

Karpunin D.V., Akimov S.A., Frolov V.A. 2005. Pore formation in lipid membranes containing lysolipids and cholesterol. Biol. Membrany (Rus.). 22, 429–432.

Google Scholar 

Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane II: Energy landscape under external stress. Sci. Rep. 7, 12509.

PubMed  PubMed Central  Google Scholar 

Derjaguin, B.V., Prokhorov, A.V. 1981. On the theory of the rupture of black films. J. Colloid Interface Sci. 81, 108–115.

Google Scholar 

Akimov S.A., Aleksandrova V.V., Galimzyanov T.R., Bashkirov P.V., Batishchev O.V. 2017. Mechanism of pore formation in stearoyl-oleoyl-phosphatidylcholine membranes subjected to lateral tension. Biol. Membrany (Rus.). 34, 270–283.

Google Scholar 

Abidor I.G., Arakelyan V.B., Chernomordik L.V., Chizmadzhev Y.A., Pastushenko V.F., Tarasevich M.P. 1979. Electric breakdown of bilayer lipid membranes: I. The main experimental facts and their qualitative discussion. J. Electroanal. Chem. Interfacial Electrochem. 104, 37–52.

Google Scholar 

Marcelja S. 1977. Structural contribution to solute–solute interaction. Croat. Chem. Acta. 49, 347–357.

Google Scholar 

Israelachvili J., Pashley R. 1982. The hydrophobic interaction is long range, decaying exponentially with distance. Nature. 300, 341–342.

PubMed  Google Scholar 

Hamm M., Kozlov M.M. 2000. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E. 3, 323–335.

Google Scholar 

Molotkovsky R.J., Alexandrova V.V., Galimzyanov T.R., Jiménez-Munguía I., Pavlov K.V., Batishchev O.V., Akimov S.A. 2018. Lateral membrane heterogeneity regulates viral-induced membrane fusion during HIV entry. Int. J. Mol. Sci. 19, 1483.

PubMed  PubMed Central  Google Scholar 

Akimov S.A., Polynkin M.A., Jiménez-Munguía I., Pavlov K.V., Batishchev O.V. 2018. Phosphatidylcholine membrane fusion is pH-dependent. Int. J. Mol. Sci. 19, 1358.

PubMed  PubMed Central  Google Scholar 

Leikin S., Kozlov M.M., Fuller N.L., Rand R.P. 1996. Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys. J. 71, 2623–2632.

PubMed  PubMed Central  Google Scholar 

Kondrashov O.V., Galimzyanov T.R., Pavlov K.V., Kotova E.A., Antonenko Y.N., Akimov S.A. 2018. Membrane elastic deformations modulate gramicidin A transbilayer dimerization and lateral clustering. Biophys. J. 115, 478–493.

PubMed  PubMed Central  Google Scholar 

Nagle J.F., Wilkinson D.A. 1978. Lecithin bilayers. Density measurement and molecular interactions. Biophys. J. 23, 159–175.

PubMed  PubMed Central  Google Scholar 

Rawicz W., Olbrich K.C., McIntosh T., Needham D., Evans E. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339.

PubMed  PubMed Central  Google Scholar 

Kozlovsky Y., Efrat A., Siegel D.A., Kozlov M.M. 2004. Stalk phase formation: Effects of dehydration and saddle splay modulus. Biophys. J. 87, 2508–2521.

PubMed  PubMed Central  Google Scholar 

Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci. Rep. 7, 12152.

PubMed  PubMed Central  Google Scholar 

Kollmitzer B., Heftberger P., Rappolt M., Pabst G. 2013. Monolayer spontaneous curvature of raft-forming membrane lipids. Soft Matter. 9, 10 877–10 884.

Google Scholar 

Fuller N., Rand R.P. 2001. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J. 81, 243–254.

PubMed  PubMed Central  Google Scholar 

Maer A.M., Rusinova R., Providence L.L., Ingólfsson H.I., Collingwood S.A., Lundbæk J.A., Andersen O.S. 2022. Regulation of gramicidin channel functions solely by changes in lipid intrinsic curvature. Front. Physiol. 13, 836789.

PubMed  PubMed Central  Google Scholar 

Horner A., Akimov S.A., Pohl P. 2013. Long and short lipid molecules experience the same interleaflet drag in lipid bilayers. Phys. Rev. Lett. 110, 268101.

PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif