Puc M., Flisar K., Reberšek S., Miklavčič D. 2001. Electroporator for in vitro cell permeabilization. Radiol. Oncol. 35, 203–207.
Mir L.M. 2001. Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry. 53, 1–10.
Potter H. 1989. Molecular genetic applications of electroporation. In: Electroporation and electrofusion in cell biology. Eds. Neumann E., Sowers A.E., Jordan C.A. New York and London: Plenum Press, p. 331–342.
Pavlov R.V., Akimov S.A., Dashinimaev E.B., Bashkirov P.V. 2024. Boosting lipofection efficiency through enhanced membrane fusion mechanisms. Int. J. Mol. Sci. 25, 13540.
PubMed PubMed Central Google Scholar
Pérez-Peinado C., Dias S.A., Domingues M.M., Benfield A.H., Freire J.M., Rádis-Baptista G., Gaspar D., Castanho M.A.R.B., Craik D.J., Henriques S.T., Veiga A.S., Andreu D. 2018. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn (15–34), antimicrobial peptides from rattlesnake venom. J. Biol. Chem. 293, 1536–1549.
Shipunova V.O., Komedchikova E.N., Kotelnikova P.A., Nikitin M.P., Deyev S.M. 2023. Targeted two-step delivery of oncotheranostic nano-PLGA for HER2-positive tumor imaging and therapy in vivo: Improved effectiveness compared to one-step strategy. Pharmaceutics. 15, 833.
PubMed PubMed Central Google Scholar
Novoselova M., Chernyshev V.S., Schulga A., Konovalova E.V., Chuprov-Netochin R.N., Abakumova T.O., German S., Shipunova V.O., Mokrousov M.D., Prikhozhdenko E., Bratashov D.N., Bogorodskiy A., Grishin O., Kosolobov S.S., Khlebtsov B.N., Inozemtseva O., Zatsepin T.S., Deyev S.M., Gorin D.A. 2022. Effect of surface modification of multifunctional nanocomposite drug delivery carriers with DARPin on their biodistribution in vitro and in vivo. ACS Appl. Bio Materials. 5, 2976–2989.
Rathinakumar R., Wimley W.C. 2008. Biomolecular engineering by combinatorial design and high-throughput screening: Small, soluble peptides that permeabilize membranes. J. Am. Chem. Soc. 130, 9849–9858.
PubMed PubMed Central Google Scholar
Guha S., Ghimire J., Wu E., Wimley W.C. 2019. Mechanistic landscape of membrane-permeabilizing peptides. Chem. Rev. 119, 6040–6085.
PubMed PubMed Central Google Scholar
Singer S.J., Nicolson G.L. 1972. The fluid mosaic model of the structure of cell membranes: Cell membranes are viewed as two-dimensional solutions of oriented globular proteins and lipids. Science. 175, 720–731.
Ingólfsson H.I., Melo M.N., Van Eerden F.J., Arnarez C., Lopez C.A., Wassenaar T.A., Periole X., de Vries A.H., Tieleman D.P., Marrink S.J. 2014. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14 554–14 559.
Ingólfsson H.I., Carpenter T.S., Bhatia H., Bremer P.T., Marrink S.J., Lightstone F.C. 2017. Computational lipidomics of the neuronal plasma membrane. Biophys. J. 113, 2271–2280.
PubMed PubMed Central Google Scholar
Verkleij A.J., Zwaal R.F., Roelofsen B., Comfurius P., Kastelijn D., van Deenen L.L. 1973. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta 323, 178–193.
Bretscher M.S. 1972. Asymmetrical lipid bilayer structure for biological membranes. Nature New Biol. 236, 11–12.
Hsieh M.K., Klauda J.B. 2021. Leaflet asymmetry modeling in the lipid composition of Escherichia coli cytoplasmic membranes. J. Phys. Chem. B 126, 184–196.
Parvez F., Alam J.M., Dohra H., Yamazaki M. 2018. Elementary processes of antimicrobial peptide PGLa-induced pore formation in lipid bilayers. Biochim. Biophys. Acta. 1860, 2262–2271.
Pfeffermann J., Eicher B., Boytsov D., Hannesschlaeger C., Galimzyanov T.R., Glasnov T.N., Pabst G., Akimov S.A., Pohl P. 2021. Photoswitching of model ion channels in lipid bilayers. J. Photochem. Photobiol. B 224, 112320.
Huang Y. 2022. Assembly methods for asymmetric lipid and polymer-lipid vesicles. Emerg. Top. Life Sci. 6, 609–617.
London E. 2019. Membrane structure-function insights from asymmetric lipid vesicles. Acc. Chem. Res. 52, 2382–2391.
PubMed PubMed Central Google Scholar
Kamiya K., Kawano R., Osaki T., Akiyoshi K., Takeuchi S. 2016. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes. Nat. Chem. 8, 881–889.
Kakuda S., Li B., London E. 2021. Preparation and utility of asymmetric lipid vesicles for studies of perfringolysin O-lipid interactions. Meth. Enzymol. 649, 253–276.
Kirby C., Green C. 1977. Transmembrane migration (“flip-flop”) of cholesterol in erythrocyte membranes. Biochem. J. 168, 575–577.
PubMed PubMed Central Google Scholar
Hasan M., Karal M.A.S., Levadnyy V., Yamazaki M. 2018. Mechanism of initial stage of pore formation induced by antimicrobial peptide magainin 2. Langmuir. 34, 3349–3362.
Karpunin D.V., Akimov S.A., Frolov V.A. 2005. Pore formation in lipid membranes containing lysolipids and cholesterol. Biol. Membrany (Rus.). 22, 429–432.
Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane II: Energy landscape under external stress. Sci. Rep. 7, 12509.
PubMed PubMed Central Google Scholar
Derjaguin, B.V., Prokhorov, A.V. 1981. On the theory of the rupture of black films. J. Colloid Interface Sci. 81, 108–115.
Akimov S.A., Aleksandrova V.V., Galimzyanov T.R., Bashkirov P.V., Batishchev O.V. 2017. Mechanism of pore formation in stearoyl-oleoyl-phosphatidylcholine membranes subjected to lateral tension. Biol. Membrany (Rus.). 34, 270–283.
Abidor I.G., Arakelyan V.B., Chernomordik L.V., Chizmadzhev Y.A., Pastushenko V.F., Tarasevich M.P. 1979. Electric breakdown of bilayer lipid membranes: I. The main experimental facts and their qualitative discussion. J. Electroanal. Chem. Interfacial Electrochem. 104, 37–52.
Marcelja S. 1977. Structural contribution to solute–solute interaction. Croat. Chem. Acta. 49, 347–357.
Israelachvili J., Pashley R. 1982. The hydrophobic interaction is long range, decaying exponentially with distance. Nature. 300, 341–342.
Hamm M., Kozlov M.M. 2000. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E. 3, 323–335.
Molotkovsky R.J., Alexandrova V.V., Galimzyanov T.R., Jiménez-Munguía I., Pavlov K.V., Batishchev O.V., Akimov S.A. 2018. Lateral membrane heterogeneity regulates viral-induced membrane fusion during HIV entry. Int. J. Mol. Sci. 19, 1483.
PubMed PubMed Central Google Scholar
Akimov S.A., Polynkin M.A., Jiménez-Munguía I., Pavlov K.V., Batishchev O.V. 2018. Phosphatidylcholine membrane fusion is pH-dependent. Int. J. Mol. Sci. 19, 1358.
PubMed PubMed Central Google Scholar
Leikin S., Kozlov M.M., Fuller N.L., Rand R.P. 1996. Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys. J. 71, 2623–2632.
PubMed PubMed Central Google Scholar
Kondrashov O.V., Galimzyanov T.R., Pavlov K.V., Kotova E.A., Antonenko Y.N., Akimov S.A. 2018. Membrane elastic deformations modulate gramicidin A transbilayer dimerization and lateral clustering. Biophys. J. 115, 478–493.
PubMed PubMed Central Google Scholar
Nagle J.F., Wilkinson D.A. 1978. Lecithin bilayers. Density measurement and molecular interactions. Biophys. J. 23, 159–175.
PubMed PubMed Central Google Scholar
Rawicz W., Olbrich K.C., McIntosh T., Needham D., Evans E. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339.
PubMed PubMed Central Google Scholar
Kozlovsky Y., Efrat A., Siegel D.A., Kozlov M.M. 2004. Stalk phase formation: Effects of dehydration and saddle splay modulus. Biophys. J. 87, 2508–2521.
PubMed PubMed Central Google Scholar
Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci. Rep. 7, 12152.
PubMed PubMed Central Google Scholar
Kollmitzer B., Heftberger P., Rappolt M., Pabst G. 2013. Monolayer spontaneous curvature of raft-forming membrane lipids. Soft Matter. 9, 10 877–10 884.
Fuller N., Rand R.P. 2001. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J. 81, 243–254.
PubMed PubMed Central Google Scholar
Maer A.M., Rusinova R., Providence L.L., Ingólfsson H.I., Collingwood S.A., Lundbæk J.A., Andersen O.S. 2022. Regulation of gramicidin channel functions solely by changes in lipid intrinsic curvature. Front. Physiol. 13, 836789.
PubMed PubMed Central Google Scholar
Horner A., Akimov S.A., Pohl P. 2013. Long and short lipid molecules experience the same interleaflet drag in lipid bilayers. Phys. Rev. Lett. 110, 268101.
Comments (0)