Yoshimura K., Kouyama T. 2008. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2. J. Mol. Biol. 375 (5), 1267–1281. https://doi.org/10.1016/j.jmb.2007.11.039
Article PubMed CAS Google Scholar
Tang L., Sun Q., Li Q., et al. 2001. Imaging bacteriorhodopsin like molecules of claret membranes from Tibet halobacteria xz515 by atomic force microscope. Chin. Sci. Bull. 46, 1897–1900. https://doi.org/10.1007/BF02901167
Bolhuis H., Palm P., Wende A., Falb M., Rampp M., Rodriguez-Valera F., Pfeiffer F., Oesterhelt D. 2006. The genome of the square archaeon Haloquadratum walsbyi: Life at the limits of water activity. BMC Genomics. 7, 169. https://doi.org/10.1186/1471-2164-7-169
Article PubMed PubMed Central CAS Google Scholar
Ko L.N., Lim G.Z., Chen X.R., Cai C.J., Liu K.T., Yang C.S. 2022. HwMR is a novel magnesium-associated protein. Biophys. J. 121 (14), 2781–2793. https://doi.org/10.1016/j.bpj.2022.06.010
Article PubMed PubMed Central CAS Google Scholar
Yu C.H., Wu H.Y., Lin H.S., Yang C.S. 2022. A conserved Trp residue in HwBR contributes to its unique tolerance toward acidic environments. Biophys. J. 121 (16), 3136–3145. https://doi.org/10.1016/j.bpj.2022.07.0090
Article PubMed PubMed Central CAS Google Scholar
Lobasso S., Lopalco P., Vitale R., Saponetti M. S., Capitanio G., Mangini V., Milano F., Trotta M., Corcelli A. 2012. The light-activated proton pump Bop I of the archaeon Haloquadratum walsbyi. Photochem. Photobiol. 88 (3), 690–700. https://doi.org/10.1111/j.1751-1097.2012.01089.x
Article PubMed CAS Google Scholar
Bada Juarez J.F., Judge P., Adam S., et al. 2021. Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization. Nature Comm. 12 (1), 629. https://doi.org/10.1038/s41467-020-20596-0
Chan S.K., Kitajima-Ihara T., Fujii R., Gotoh T., Murakami M., Ihara K., Kouyama T. 2014. Crystal structure of cruxrhodopsin-3 from haloarcula vallismortis. PLoS One. 9 (9), e108362. https://doi.org/10.1371/journal.pone.0108362
Article PubMed PubMed Central CAS Google Scholar
Oesterhelt D., Stoeckenius W. 1974. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Meth. Enzymol. 31, 667–678. https://doi.org/10.1016/0076-6879(74)31072-5
Kuklina D.D., Shishkin A.Y., Bezruchko I.O., et al. 2024. Cultivation of halophilic archaea Halobacterium salinarum. Phys. Part. Nuclei Lett. 21, 819–822. https://doi.org/10.1134/S1547477124701449
Maslov I., Bogorodskiy A., Mishin A., Okhrimenko I., Gushchin I., Kalenov S., Dencher N. A., Fahlke C., Büldt G., Gordeliy V., Gensch T., Borshchevskiy V. 2018. Efficient non-cytotoxic fluorescent staining of halophiles. Sci. Rep. 8 (1), 2549. https://doi.org/10.1038/s41598-018-20839-7
Article PubMed PubMed Central CAS Google Scholar
Ivankov O., Murugova T. N., Ermakova E.V., et al. 2021. Amyloid-beta peptide (25–35) triggers a reorganization of lipid membranes driven by temperature changes. Sci. Rep. 11 (1), 21990. https://doi.org/10.1038/s41598-021-01347-7
Article PubMed PubMed Central CAS Google Scholar
Ryzhykau Y.L., Povarova O.I., Dronova E.A., Ku-klina D.D., Antifeeva I.A., Ilyinsky N.S., Okhrimenko I.S., Semenov Y.S., Kuklin A.I., Ivanovich V., Fonin A.V., Uversky V.N., Turoverov K.K., Kuznetsova I. M. 2024. Small-angle X-ray scattering structural insights into alternative pathway of actin oligomerization associated with inactivated state. Biochem. Biophys. Res. Comm. 693, 149340. https://doi.org/10.1016/j.bbrc.2023.149340
Article PubMed CAS Google Scholar
Liu G., Li Y., Wu H., Wu X., Xu X., Wang W., Zhang R., Li, N. 2018. Upgraded SSRF BL19U2 beamline for small-angle X-ray scattering of biological macromolecules in solution. J. Appl. Crystal. 51 (6), 1633–1640. https://doi.org/10.1107/S160057671801316X
Li Y.W., Liu G.F., Wu H.J., et al. 2020. BL19U2: Small-angle X-ray scattering beamline for biological macromolecules in solution at SSRF. Nucl. Sci. Tech. 31, 117. https://doi.org/10.1007/s41365-020-00825-3
Hopkins J.B. 2024. BioXTAS RAW 2: New developments for a free open-source program for small-angle scattering data reduction and analysis. J. Appl. Crystal. 57 (Pt 1), 194–208. https://doi.org/10.1107/S1600576723011019
Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R., et al. 2021. ATSAS 3.0: Expanded functionality and new tools for small angle scattering data analysis J. Appl. Cryst. 54, 343–355. https://doi.org/10.1107/S1600576720013412
Hammersley A.P. 2016. FIT2D: A multi-purpose data reduction, analysis and visualization program. J. Appl. Cryst. 49, 646–652. https://doi.org/10.1107/S1600576716000455
Heiney P.A. 2025 Datasqueeze: A software tool for powder and small-angle X-ray diffraction analysis. https://www.physics.upenn.edu/~heiney/datasqueeze/index.html. Accessed May 06, 2025
Oren A. 2006. Pigments of halophilic microorganisms. In: Halophilic microorganisms and their environments. Dordrecht: Kluwer Academic Publishers, 2006.
Comments (0)