Oon M.B., Nik Ab Rahman N.H., Mohd Noor N., Yazid M.B. 2024. Patient-controlled analgesia morphine for the management of acute pain in the emergency department: A systematic review and meta-analysis. Int. J. Emerg. Med. 17 (1), 37. https://doi.org/10.1186/s12245-024-00615-3
Article PubMed PubMed Central Google Scholar
Varga B.R., Streicher J.M., Majumdar S. 2023. Strategies towards safer opioid analgesics – A review of old and upcoming targets. Br. J. Pharmacol. 180 (7), 975–993. https://doi.org/10.1111/bph.15760
Kuzmina N. E., Kuzmin V. S. 2011. The development of ideas about the interaction of drugs with opiate receptors. Uspekhi khimii (Rus.). 80 (2), 157–181.
Bagley J.R., Thomas S.A., Rudo F.G., Spencer H.K., Doorley B.M., Ossipov M.H., Jerussi T.P., Benvenga M.J., Spaulding T. 1991. New 1-(heterocyclylalkyl)-4-(propionanilido)-4-piperidinyl methyl ester and methylene methyl ether analgesics. J. Med. Chem. 34 (2), 827–841. https://doi.org/10.1021/jm00106a051
Vardanyan R.S., Hruby V.J. 2014. Fentanyl-related compounds and derivatives: current status and future prospects for pharmaceutical applications. Future Med. Chem. 6 (4), 385–412. https://doi.org/10.4155/fmc.13.215
Kelly E., Sutcliffe K., Cavallo D., Ramos-Gonzalez N., Alhosan N., Henderson G. 2023. The anomalous pharmacology of fentanyl. Br. J. Pharmacol. 180 (7), 797–812. https://doi.org/10.1111/bph.15573
Volpe D.A., McMahon Tobin G.A., Mellon R.D., Katki A.G., Parker R.J., Colatsky T., Kropp T.J., Verbois S.L. 2011. Uniform assessment and ranking of opioid μ receptor binding constants for selected opioid drugs. Regul. Toxicol. Pharmacol. 59 (3), 385–390.https://doi.org/10.1016/j.yrtph.2010.12.007
Uiba V.V., Krivorotov Denis Viktorovich, Zabelin M.V., Radilov A.S., Rembovsky V.R., Dulov S.A., Kuznetsov V.A., Yerofeev G.G., Martinovich N.V., Sosnov A.V. 2018. Opioid receptor antagonists. From the present to the future. Meditsina ekstremalnikh situatsiy (Rus.). 20 (3), 356–370.
Sosnov A.V., Semchenko F.M., Tokhmakhchi V.N., Sosnova A.A., Vlasov M.I., Radilov A.S., Krivorotov D.V. 2018. Criteria for the selection of compounds for the development of potent analgesics and other centrally acting drugs. Razrabotka i registratsiya lekarstvnnikh sredstv. (Rus.). 3 (24), 114–128.
Waldhoer M., Bartlett S.E., Whistler J.L. 2004. Opioid receptors. Annu. Rev. Biochem. 73, 953–990. https://doi.org/10.1146/annurev.biochem.73.011303.073940
Adler T.K. 1963. Comparative potencies of codeine and its demethylated metabolites after intraventricular injection in the mouse. J. Pharmacol. Exp. Ther. 140, 155–161.
Raynor K., Kong H., Chen Y., Yasuda K., Yu L., Bell G.I., Reisine T. 1994. Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol. Pharmacol. 45 (2), 330–334.
Varghese V., Hudlicky T. 2014. A short history of the discovery and development of naltrexone and other morphine derivatives. In: Natural products in medicinal chemistry. Ed. Hanessian S. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, p. 225–250. https://doi.org/10.1002/9783527676545.ch06
Codd E.E., Shank R.P., Schupsky J.J., Raffa R.B. 1995. Serotonin and norepinephrine uptake inhibiting activity of centrally acting analgesics: Structural determinants and role in antinociception. J. Pharmacol. Exp. Ther. 274 (3), 1263–1270.
Toll L., Berzetei-Gurske I.P., Polgar W.E., Brandt S.R., Adapa I.D., Rodriguez L., Schwartz R.W., Haggart D., O’Brien A., White A., Kennedy J.M., Craymer K., Farrington L., Auh J.S. 1998. Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res. Monogr. 178, 440–466.
Clark S.D., Abi-Dargham A. 2019. The role of dynorphin and the kappa opioid receptor in the symptomatology of schizophrenia: A review of the evidence. Biol. Psychiatry. 86 (7), 502–511. https://doi.org/10.1016/j.biopsych.2019.05.012
Krivorotov D.V., Kochura D.M., Dulov S.A., Radilov A.S. 2022. Experimental comparison of lipophilicity of opioid antagonists. Toksikologicheskiy vestnik (Rus.). 30 (3), 149–157. https://doi.org/10.47470/0869-7922-2022-30-3-149-157
Waterhouse R.N. 2003. Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol. Imaging Biol. 5 (6), 376–389. https://doi.org/10.1016/j.mibio.2003.09.014
Noha S.M., Schmidhammer H., Spetea M. 2017. Molecular docking, molecular dynamics, and structure-activity relationship explorations of 14-oxygenated N‑methylmorphinan-6-ones as potent μ-opioid receptor agonists. ACS Chem. Neurosci. 8 (6), 1327–1337. https://doi.org/10.1021/acschemneuro.6b00460
Wu H., Wacker D., Mileni M., Katritch V., Han G.W., Vardy E., Liu W., Thompson A.A., Huang X.P., Carr-oll F.I., Mascarella S.W., Westkaemper R.B., Mosier P.D., Roth B.L., Cherezov V., Stevens R.C. 2012. Structure of the human κ-opioid receptor in complex with JDTic. Nature. 485 (7398), 327–332. https://doi.org/10.1038/nature10939
Article PubMed PubMed Central Google Scholar
Granier S., Manglik A., Kruse A.C., Kobilka T.S., Thian F.S., Weis W.I., Kobilka B.K. 2012. Structure of the δ-opioid receptor bound to naltrindole. Nature. 485 (7398), 400–404. https://doi.org/10.1038/nature11111
Article PubMed PubMed Central Google Scholar
Manglik A., Kruse A.C., Kobilka T.S., Thian F.S., Mathiesen J.M., Sunahara R.K., Pardo L., Weis W.I., Kobilka B.K., Granier S. 2012. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature. 485 (7398), 321–326. https://doi.org/10.1038/nature10954
Article PubMed PubMed Central Google Scholar
Froimowitz M. 1993. HyperChem: A software package for computational chemistry and molecular modeling. Biotechniques. 14 (6), 1010–1013.
Bye E. 1976. The crystal structure of morphine hydrate. Acta Chem. Scand. 30 (6), 549–554. https://doi.org/10.3891/acta.chem.scand.30b-0549
Gelbrich T., Braun D.E., Griesser U.J. 2012. Morphine hydro-chloride anhydrate. Acta Crystallogr. Sect. E Struct. Rep. Online 68 (Pt 12), o3358–3359. https://doi.org/10.1107/S1600536812046405
Article PubMed PubMed Central Google Scholar
Canfield D.V., Barrick J., Giessen B.C. 1987. Structure of codeine. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 43 (5), 977–979. https://doi.org/10.1107/S0108270187093363
Braun D.E., Gelbrich T., Kahlenberg V., Griesser U.J. 2014. Insights into hydrate formation and stability of morphinanes from a combination of experimental and computational approaches. Mol. Pharm. 11 (9), 3145–3163. https://doi.org/10.1021/mp500334z
Article PubMed PubMed Central Google Scholar
Ortiz-de León C., Hartwick C.J., Stuedemann C.A., Brogden N.K., MacGillivray L.R. 2022. Mechanochemistry facilitates a single-crystal X-ray structure determination of free base naloxone anhydrate. Cryst. Growth Des. 22 (11), 6622–6626. https://doi.org/10.1021/acs.cgd.2c00831
Article PubMed PubMed Central Google Scholar
Klein C.L., Majeste R.J., Stevens E.D. 1987. Experimental electron density distribution of naloxone hydrochloride dihydrate, a potent opiate antagonist. J. Am. Chem. Soc. 109 (22), 6675–6681. https://doi.org/10.1021/ja00256a021
Scheins S., Messerschmidt M., Morgenroth W., Paulmann C., Luger P. 2007. Electron density analyses of opioids: A comparative study. J. Phys. Chem. A. 111 (25), 5499–5508.https://doi.org/10.1021/jp0709252
Steinberg B.D., Harris E.T., Foxman B.M., Oliveira M.A., Hickey M.B. 2018. New look at naltrexone hydrochloride hydrates: Understanding phase behavior and characterization of two dihydrate polymorphs. Cryst. Growth Des. 18 (6), 3502–3509. https://doi.org/10.1021/acs.cgd.8b00262
Zhuang Y., Wang Y., He B., He X., Zhou X.E., Guo S., Rao Q., Yang J., Liu J., Zhou Q., Wang X., Liu M., Liu W., Jiang X., Yang D., Jiang H., Shen J., Melcher K., Chen H., Jiang Y., Cheng X., Wang M.W., Xie X., Xu H.E. 2022. Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell. 185 (23), 4361–4375.e19. https://doi.org/10.1016/j.cell.2022.09.041
Claff T., Yu J., Blais V., Patel N., Martin C., Wu L., Han G.W., Holleran B.J., Van der Poorten O., White K.L., Hanson M.A., Sarret P., Gendron L., Cherezov V., Katritch V., Ballet S., Liu Z.J., Müller C.E., Stevens R.C. 2019. Elucidating the active δ-opioid receptor crystal structure with peptide and small-molecule agonists. Sci. Adv. 5 (11), eaax9115. https://doi.org/10.1126/sciadv.aax9115
Wang Y., Zhuang Y., DiBerto J.F., Zhou X.E., Schmitz G.P., Yuan Q., Jain M.K., Liu W., Melcher K., Jiang Y., Roth B.L., Xu H.E. 2023. Structures of the entire human opioid receptor family. Cell, 186 (2), 413–427.e17. https://doi.org/10.1016/j.cell.2022.12.026
Humphrey W., Dalke A., Schulten K. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14 (1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
Sheldrick G.M. 2015. SHELXT–integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 71 (Pt 1), 3–8. https://doi.org/10.1107/S2053273314026370
Comments (0)