Kosztelnik M., Kurucz A., Papp D., Jones E., Sigmond T., Barna J., Traka M.H., Lorincz T., Szarka A., Banhegyi G. 2019. Suppression of AMPK/aak-2 by NRF2/SKN-1 down-regulates autophagy during prolonged oxidative stress. FASEB J. 33(2), 2372. https://doi.org/10.1096/fj.201800565RR
Article PubMed CAS Google Scholar
Izah S.C., Ogidi O.I., Ogwu M.C., Salimon S.S., Yusuf Z.M., Akram M., Raimi M.O., Iyingiala, A. 2024. Historical perspectives and overview of the value of herbal medicine. In: Herbal medicine phytochemistry. Reference series in phytochemistry: Applications and trends. Izah S.C., Ogwu M.C., Akram M., Eds. Springer, p. 3–35. https://doi.org/10.1007/978-3-031-43199-9_1
Martins A.C., Virgolini M.B., Ávila D.S., Scharf P., Li J., Tinkov A.A., Skalny A.V., Bowman A.B., Rocha, J.B.T., Aschner M. 2023. Mitochondria in the spotlight: C. elegans as a model organism to evaluate xenobiotic-induced dysfunction. Cells. 12 (17), 2124. https://doi.org/10.3390/cells12172124
Article PubMed PubMed Central CAS Google Scholar
Sammi S.R., Foguth R.M., Nieves C.S., De Perre C., Wipf P., McMurray C.T., Lee L.S., Cannon J.R. 2019. Perfluorooctane sulfonate (PFOS) produces dopaminergic neuropathology in Caenorhabditis elegans. Toxicol. Sci. 172 (2), 417–434. https://doi.org/10.1093/toxsci/kfz191
Article PubMed PubMed Central CAS Google Scholar
Uttara B., Singh A.V., Zamboni P., Mahajan R. 2009. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7 (1), 65–74. https://doi.org/10.2174/157015909787602823
Article PubMed PubMed Central CAS Google Scholar
Salmon T.B., Evert B.A., Song B., Doetsch P.W. 2004. Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res. 32 (12), 3712–3723. https://doi.org/10.1093/nar/gkh696
Article PubMed PubMed Central CAS Google Scholar
Edmondson D.E. 2014. Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: Biological implications. Curr. Pharm. Des. 20 (2), 155–160. https://doi.org/10.2174/13816128113190990406
Article PubMed CAS Google Scholar
Hernández-Cruz E.Y., Eugenio-Pérez D., Ramírez-Magaña K.J., Pedraza-Chaverri J. 2023. Effects of vegetal extracts and metabolites against oxidative stress and associated diseases: Studies in Caenorhabditis elegans. ACS Omega. 8 (10), 8936–8959. https://doi.org/10.1021/acsomega.2c07025
Article PubMed PubMed Central CAS Google Scholar
Halliwell B. 2012. Free radicals and antioxidants: updating a personal view. Nutr. Rev. 70 (5), 257–265. https://doi.org/10.1111/j.1753-4887.2012.00476.x
Kniazeva M., Ruvkun G. 2019. Rhizobium induces DNA damage in Caenorhabditis elegans intestinal cells. Proc. Natl. Acad. Sci. USA. 116 (9), 3784–3792. https://doi.org/10.1073/pnas.1815656116
Article PubMed PubMed Central CAS Google Scholar
Coyle C.H., Martinez L.J., Coleman M.C., Spitz D.R., Weintraub N.L., Kader K.N. 2007. Mechanisms of H2O2-induced oxidative stress in endothelial cells. Free Radic. Biol. Med. 40 (12), 2206–2213. https://doi.org/10.1097/01.mat.0000247157.84350.e8
Pérez-Torres I., Guarner-Lans V., Rubio-Ruiz M.E. 2017. Reductive stress in inflammation-associated diseases and the pro-oxidant effect of antioxidant agents. Int. J. Mol. Sci. 18 (10), 2098. https://doi.org/10.3390/ijms18102098
Article PubMed PubMed Central CAS Google Scholar
Liu L., Guo P., Wang P., Zheng S., Qu Z., Liu N. 2021. The review of anti-aging mechanism of polyphenols on Caenorhabditis elegans. Front. Bioeng. Biotechnol. 9, 635768. https://doi.org/10.3389/fbioe.2021.635768
Article PubMed PubMed Central Google Scholar
Onraet T., Zuryn S. 2024. C. elegans as a model to study mitochondrial biology and disease. Semin. Cell Dev. Biol. 154 (Pt A), 48–58. https://doi.org/10.1016/j.semcdb.2023.04.006
Matkowski A., Kus P., Goralska E., Wozniak D. 2013. Mangiferin–a bioactive xanthonoid, not only from mango and not just antioxidant. Mini Rev. Med. Chem. 13 (3), 439–455. https://doi.org/10.2174/1389557511313030011
Article PubMed CAS Google Scholar
Mei S, Perumal M, Battino M, Kitts DD, Xiao J, Ma H, Chen X. 2023. Mangiferin: A review of dietary sources, absorption, metabolism, bioavailability, and safety. Crit. Rev. Food Sci. Nutr. 63 (18), 3046–3064. https://doi.org/10.1080/10408398.2021.1983767
Article PubMed CAS Google Scholar
Imran M., Arshad M.S., Butt M.S., Kwon J-H., Arshad M.U., Sultan M.T. 2017. Mangiferin: A natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis. 16 (1), 1–17. https://doi.org/10.1186/s12944-017-0449-y
Jangra A., Arora M.K., Kisku A., Sharma S. 2021. The multifaceted role of mangiferin in health and diseases: A review. Adv. Tradit. Med. 21, 619–643. https://doi.org/10.1007/s13596-020-00471-5
Xiang G., Guo S., Xing N., Du Q., Qin J., Gao H., Zhang Y., Wang S. 2024. Mangiferin, a potential supplement to improve metabolic syndrome: Current status and future opportunities. Am. J. Chin. Med. 52 (02), 355–386. https://doi.org/10.1142/S0192415X24500150
Article PubMed CAS Google Scholar
Salehi B., Azzini E., Zucca P., Varoni E.M, et al. 2020. Plant-derived bioactives and oxidative stress-related disorders: A key trend towards healthy aging and longevity promotion. Appl. Sci. 10 (3), 947. https://doi.org/10.3390/app10030947
Rahmani A.H., Almatroudi A., Allemailem K.S., et al. 2023. Role of mangiferin in management of cancers through modulation of signal transduction pathways. Biomed. 11 (12), 3205. https://doi.org/10.3390/biomedicines11123205
Walkowiak J., Lisowska A., Blaszczynski M. 2008. The changing face of the exocrine pancreas in cystic fibrosis: Pancreatic sufficiency, pancreatitis and genotype. Eur. J. Gastroenterol. Hepatol. 20 (3), 157–160. https://doi.org/10.1097/meg.0b013e3282f36d16
Ju J., de Oliveira M.S., Qiao Y. 2023. Pharmacological effects of cinnamon in functional foods. In: Cinnamon: A medicinal plant and a functional food systems. Food Bioactive Ingredients. Springer, p. 57–68. https://doi.org/10.1007/978-3-031-33505-1
Alam M.A., Subhan N., Hossain H., Hossain M., Reza H.M., Rahman M.M., Ullah M.O. 2016. Hydroxycinnamic acid derivatives: A potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab. (Lond). 13, 27. https://doi.org/10.1186/s12986-016-0080-3
Article PubMed CAS Google Scholar
Wu L., Zhou B., Oshiro-Rapley N., et al. 2016. An ancient, unified mechanism for metformin growth inhibition in C. elegans and cancer. Cell. 167 (7), 1705–1718. https://doi.org/10.1016/j.cell.2016.11.055
Article PubMed PubMed Central CAS Google Scholar
Leyane T.S., Jere S.W., Houreld N.N. 2022. Oxidative stress in ageing and chronic degenerative pathologies: Molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. Int. J. Mol. Sci. 23 (13), 7273. https://doi.org/10.3390/ijms23137273
Article PubMed PubMed Central CAS Google Scholar
Shin H., Lee H., Fejes A.P., Baillie D.L., Koo H-S., Jones S.J.M. 2011. Gene expression profiling of oxidative stress response of C. elegans aging defective AMPK mutants using massively parallel transcriptome sequencing. BMC Res. Notes. 4 (1), 34. https://doi.org/10.1186/1756-0500-4-34
Article PubMed PubMed Central CAS Google Scholar
Li Y., Wu Y., Jiang K., Han W., Zhang J., Xie L., Liu Y., Xiao J., Wang X. 2019. Mangiferin prevents TBHP-induced apoptosis and ECM degradation in mouse osteoarthritic chondrocytes via restoring autophagy and ameliorates murine osteoarthritis. Oxid. Med. Cell Longev. 8783197. https://doi.org/10.1155/2019/8783197
Yaribeygi H., Sathyapalan T., Atkin S.L., Sahebkar A. 2020. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell Longev. 1, 8609213. https://doi.org/10.1155/2020/8609213
Di Domenico M., Pinto F., Quagliuolo L., et al. 2019. The role of oxidative stress and hormones in controlling obesity. Front. Endocrinol. (Lausanne). 10, 540. https://doi.org/10.3389/fendo.2019.00540
Comments (0)