Cross M, Ong KL, Culbreth GT, Steinmetz JD, Cousin E, Lenox H, et al. Global, regional, and national burden of gout, 1990-2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2024;6:E507–E17.
Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet. 2016;388:2039–52.
Sun ZQ, Zhang XW, Zhao Z, Li XX, Pang JX, Chen JJ. Recent progress and future perspectives on anti-hyperuricemic agents. J Med Chem. 2024;67:19966–87.
Wen SJ, Arakawa H, Tamai I. Uric acid in health and disease: from physiological functions to pathogenic mechanisms. Pharmacol Ther. 2024;256:19.
Richette P. Gout: an overview of available urate lowering therapies. Ann Pharm Fr. 2012;70:133–8.
Burns CM, Wortmann RL. Gout therapeutics: new drugs for an old disease. Lancet. 2011;377:165–77.
Sun ZG, Wu KX, Ullah I, Zhu HL. Recent advances in xanthine oxidase inhibitors. Mini Rev Med Chem. 2024;24:1177–86.
Zhang M, Solomon DH, Desai RJ, Kang EH, Liu J, Neogi T, et al. Assessment of cardiovascular risk in older patients with gout initiating febuxostat versus allopurinol: population-based cohort study. Circulation. 2018;138:1116–26.
PubMed PubMed Central Google Scholar
Azevedo VF, Kos IA, Vargas-Santos AB, Pinheiro GDC, Paiva ED. Benzbromarone in the treatment of gout. Adv Rheumatol 2019;59:5.
Pineda C, Soto-Fajardo C, Mendoza J, Gutiérrez J, Sandoval H. Hypouricemia: what the practicing rheumatologist should know about this condition. Clin Rheumatol 2020;39:135–47.
Saito H, Toyoda Y, Takada T, Hirata H, Ota-Kontani A, Miyata H, et al. Omega-3 polyunsaturated fatty acids inhibit the function of human URAT1, a renal urate re-absorber. Nutrients. 2020;12:12.
Kahn K, Tipton PA. Spectroscopic characterization of intermediates in the urate oxidase reaction. Biochemistry. 1998;37:11651–9.
Dabbagh F, Ghoshoon MB, Hemmati S, Zamani M, Mohkam M, Ghasemi Y. Engineering human urate oxidase: towards reactivating it as an important therapeutic enzyme. Curr Pharm Biotechnol. 2016;17:141–6.
Becker BF. Towards the physiological function of uric acid. Free Radic Biol Med. 1993;14:615–31.
Smyth CJ. Disorders associated with hyperuricemia. Arthritis Rheum. 1975;18:713–20.
Rozenberg S, Roche B, Dorent R, Koeger AC, Borget C, Wrona N, et al. Urate-oxidase for the treatment of tophaceous gout in heart transplant recipients-a report of 3 cases. Rev Rhum Engl Ed. 1995;62:413–5.
Ban ZL, Sun MD, Ji HH, Ning QX, Cheng CX, Shi TF, et al. Immunogenicity-masking delivery of uricase against hyperuricemia and gout. J Control Release. 2024;372:862–73.
Chiu YC, Hsu TS, Huang CY, Hsu CH. Structural and biochemical insights into a hyperthermostable urate oxidase from Thermobispora bispora for hyperuricemia and gout therapy. Int J Biol Macromol. 2021;188:914–23.
Nyborg AC, Ward C, Zacco A, Chacko B, Grinberg L, Geoghegan JC, et al. A therapeutic uricase with reduced immunogenicity risk and improved development properties. PLoS One. 2016;11:23.
Sievers F, Higgins DG. Clustal omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27:135–45.
Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989;77:51–9.
Filgueiras MF, Borges EM. Quick and cheap colorimetric quantification of proteins using 96-well-plate images. J Chem Educ. 2022;99:1778–87.
Hibi T, Kume A, Kawamura A, Itoh T, Fukada H, Nishiya Y. Hyperstabilization of tetrameric Bacillus sp TB-90 urate oxidase by introducing disulfide bonds through structural plasticity. Biochemistry. 2016;55:724–32.
Gooran N, Kopra K. Fluorescence-based protein stability monitoring-a review. Int J Mol Sci. 2024;25:26.
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25.
Yuan CM, Chen HH, Sun NN, Ma XJ, Xu J, Fu W. Molecular dynamics simulations on RORγt: insights into its functional agonism and inverse agonism. Acta Pharmacol Sin. 2019;40:1480–9.
CAS PubMed PubMed Central Google Scholar
Hess B, Bekker H, And HJCB, Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–72.
Shi Y, Wang T, Zhou XE, Liu QF, Jiang Y, Xu HE. Structure-based design of a hyperthermostable AgUricase for hyperuricemia and gout therapy. Acta Pharmacol Sin. 2019;40:1364–72.
CAS PubMed PubMed Central Google Scholar
Juan ECM, Hoque MM, Shimizu S, Hossain MT, Yamamoto T, Imamura S, et al. Structures of Arthrobacter globiformis urate oxidase-ligand complexes. Acta Crystallogr D Biol Crystallogr. 2008;64:815–22.
Kratzer JT, Lanaspa MA, Murphy MN, Cicerchi C, Graves CL, Tipton PA, et al. Evolutionary history and metabolic insights of ancient mammalian uricases. Proc Natl Acad Sci USA. 2014;111:3763–8.
CAS PubMed PubMed Central Google Scholar
Spackova A, Vavra O, Racek T, Bazgier V, Sehnal D, Damborsky J, et al. ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era. Nucleic Acids Res. 2024;52:D413–D8.
Maiorov VN, Crippen GM. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J Mol Biol. 1994;235:625–34.
Schlesinger N, Pérez-Ruiz F, Lioté F. Mechanisms and rationale for uricase use in patients with gout. Nat Rev Rheumatol. 2023;19:640–9.
Wei DH, Huang XQ, Qiao Y, Rao JJ, Wang L, Liao F, et al. Catalytic mechanisms for cofactor-free oxidase-catalyzed reactions: reaction pathways of uricase-catalyzed oxidation and hydration of uric acid. ACS Catal. 2017;7:4623–36.
Comments (0)