Boeyer, M. E., Leary, E. V., Sherwood, R. J. & Duren, D. L. Evidence of the non-linear nature of skeletal maturation. Arch. Dis. Child. 105, 631–638 (2020).
Ke, D. et al. Accelerated skeletal maturation is associated with overweight and obesity as early as preschool age: A cross-sectional study. BMC Pediatr. 20, 452 (2020).
Article PubMed PubMed Central Google Scholar
Boeyer, M. E., Sherwood, R. J., Deroche, C. B. & Duren, D. L. Early maturity as the new normal: A century-long study of bone age. Clin. Orthop. Relat. Res. 476, 2112–2122 (2018).
Article PubMed PubMed Central Google Scholar
Boeyer, M. E. & Ousley, S. D. Skeletal assessment and secular changes in knee development: a radiographic approach. Am. J. Phys. Anthropol. 162, 229–240 (2017).
Article CAS PubMed Google Scholar
Hawley, N. L. et al. Secular trends in skeletal maturity in South Africa: 1962–2001. Ann. Hum. Biol. 36, 584–594 (2009).
Zhang, S. Y. et al. Standards of TW3 skeletal maturity for Chinese children. Ann. Hum. Biol. 35, 349–354 (2008).
Su, H. P. & Su, Z. Factors affecting skeletal maturation (Chinese). Int. J. Pediatr. 04, 279–282 (2020).
Cavallo, F., Mohn, A., Chiarelli, F. & Giannini, C. Evaluation of bone age in children: A mini-review. Front. Pediatr. 9, 580314 (2021).
Article PubMed PubMed Central Google Scholar
Almeida, M. et al. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol. Rev. 97, 135–187 (2017).
Creo, A. L. & Schwenk, W. F. 2nd. Bone age: A handy tool for pediatric providers. Pediatrics 140, e20171486 (2017).
Nilsson, O. et al. Evidence that estrogen hastens epiphyseal fusion and cessation of longitudinal bone growth by irreversibly depleting the number of resting zone progenitor cells in female rabbits. Endocrinology 155, 2892–2899 (2014).
Article PubMed PubMed Central Google Scholar
Sopher, A. B. et al. Bone age advancement in prepubertal children with obesity and premature adrenarche: possible potentiating factors. Obes. (Silver Spring) 19, 1259–1264 (2011).
de Groot, C. J. et al. Determinants of advanced bone age in childhood Obesity. Horm. Res. Paediatr. 87, 254–263 (2017).
Frenn, M., Kaugars, A., Garcia, J. & Garnier-Villarreal, M. Child body fat and body mass index: which determinants are most important?. West. J. Nurs. Res. 42, 593–602 (2020).
Wong, J. C. et al. Comparison of obesity and metabolic syndrome prevalence using fat mass index, body mass index and percentage body fat. Plos. One 16, e0245436 (2021).
Article CAS PubMed PubMed Central Google Scholar
Hua, L. et al. Influence factors study on children’s body component analysis of bone age of children age 3 to 12 years old (Chinese). Chin. J. Child Health Care. 22, 1134–1140 (2014).
Shu, W., Li, M., Vermund, S. H., Li, H. & Hu, Y. Body composition trajectories during childhood predict skeletal maturation at puberty: A longitudinal study. Heliyon 10, e36381 (2024).
Article PubMed PubMed Central Google Scholar
Li, H., Ji, C. Y., Zong, X. N. & Zhang, Y. Q. Body mass index growth curves for Chinese children and adolescents aged 0 to 18 years (Chinese). Zhonghua Er Ke Za Zhi 47, 493–498 (2009).
Li, Z. et al. Weight-specific grip strength as a novel indicator associated with cardiometabolic risk in children: The EMSNGS study. J. Clin. Endocrinol. Metab. 26, dgae673 (2024).
Ye, J. P., Liu, F., Tang, C. L., Wang, J. L. & Yao, B. Z. Association between bone age and body mass index in children (Chinese). J. Med. Res. 50, 105–109 (2021).
Su, H. P. et al. Factors affecting bone maturation in Chinese girls aged 4-8 years with isolated premature thelarche. Bmc. Pediatr. 20, 356 (2020).
Article CAS PubMed PubMed Central Google Scholar
Long, Y., Liu, B. X., Zhou, H. M. & Jiang, X. P. Investigation and analysis of bone age of 2387 children and adolescents (Chinese). China Prac. Med. 17, 169–172 (2022).
Himes, J. H. An early hand-wrist atlas and its implications for secular change in bone age. Ann. Hum. Biol. 11, 71–75 (1984).
Article CAS PubMed Google Scholar
Su, H. P. et al. Bone maturation in girls aged 4–8 years with isolated premature thelarche in a relative progression (Chinese). Chin. J. Osteoporos. Bone Min. Res. 14, 29–34 (2021).
Xiong, X. X. et al. Hand-wrist bone age assessment of Han and Uygur adolescents and children in Urumqi (Chinese). Chin. J. Tissue Eng. Res. 19, 2341–2345 (2015).
Li, X. M., Chen, J.-Y. & Cheng, X.-G. The analysis of variation of Han male children and adolescent bone age of wrist-hand in Beijing and Guangzhou (Chinese). Chin. J. Rad. 47, 1063–1065 (2013).
Klein, K. O., Newfield, R. S. & Hassink, S. G. Bone maturation along the spectrum from normal weight to obesity: a complex interplay of sex, growth factors and weight gain. J. Pediatr. Endocrinol. Metab. 29, 311–318 (2016).
Article CAS PubMed Google Scholar
Sanders, J. O. et al. The uniform pattern of growth and skeletal maturation during the human adolescent growth spurt. Sci. Rep. 7, 16705 (2017).
Article PubMed PubMed Central Google Scholar
Asif, M., Aslam, M., Wyszyńska, J. & Altaf, S. Establishing body mass index growth charts for Pakistani children and adolescents using the lambda-mu-sigma (LMS) and quantile regression method. Minerva Pediatr. (Torino) 75, 866–875 (2023).
Tanner, J., Oshman, D., Bahhage, F. & Healy, M. Tanner-Whitehouse bone age reference values for North American children. J. Pediatr. 131, 34–40 (1997).
Article CAS PubMed Google Scholar
Zhang, S.-Y. et al. The standards of skeletal maturity of hand and wrist for Chinese-China05V.-Revised centile curves of skeletal maturity (Chinese). Chin. J. Sports Med. 28, 20–24 (2009).
de Zegher, F. & Ibáňez, L. On the rising incidence of early breast development: puberty as an adaptive escape from ectopic adiposity in mismatch girls. Eur. J. Endocrinol. 185, L1–L2 (2021).
Article PubMed PubMed Central Google Scholar
de Zegher, F., García Beltrán, C., López-Bermejo, A. & Ibáñez, L. Metformin for rapidly maturing girls with central adiposity: less liver fat and slower bone maturation. Horm. Res. Paediatr. 89, 136–140 (2018).
McCormack, S. E. et al. Relative skeletal maturation and population ancestry in nonobese children and adolescents. J. Bone Miner. Res. 32, 115–124 (2017).
Shao, M. et al. Advances in the research on myokine-driven regulation of bone metabolism. Heliyon 10, e22547 (2024).
Sui, H., Dou, J., Shi, B. & Cheng, X. The reciprocity of skeletal muscle and bone: an evolving view from mechanical coupling, secretory crosstalk to stem cell exchange. Front. Physiol. 15, 1349253 (2024).
Article PubMed PubMed Central Google Scholar
Taylor, D. F. & Bishop, D. J. Transcription factor movement and exercise-induced mitochondrial biogenesis in human skeletal muscle: current knowledge and future perspectives. Int. J. Mol. Sci. 23, 1517 (2022).
Zhou, X. L. et al. Diagnostic performance of convolutional neural network-based Tanner-Whitehouse 3 bone age assessment system. Quant. Imaging Med. Surg. 10, 657–667 (2020).
Article PubMed PubMed Central Google Scholar
Wang, F. et al. Artificial intelligence system can achieve comparable results to experts for bone age assessment of Chinese children with abnormal growth and development. PeerJ 8, e8854 (2020).
Comments (0)