Compston JE, McClung MR, Leslie WD, Osteoporosis (2019) Lancet 393(10169):364–376. https://doi.org/10.1016/s0140-6736(18)32112-3
Khosla S, Samakkarnthai P, Monroe DG, Farr JN (2021) Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat Rev Endocrinol 17(11):685–697. https://doi.org/10.1038/s41574-021-00555-5 [published Online First: 20210913]
Article CAS PubMed PubMed Central Google Scholar
Van Hulten V, Rasmussen N, Driessen JHM et al (2021) Fracture patterns in type 1 and type 2 diabetes mellitus: A narrative review of recent literature. Curr Osteoporos Rep 19(6):644–655. https://doi.org/10.1007/s11914-021-00715-6 [published Online First: 20211221]
Article PubMed PubMed Central Google Scholar
Yu EW, Thomas BJ, Brown JK, Finkelstein JS (2012) Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Min Res 27(1):119–124. https://doi.org/10.1002/jbmr.506
Gortler H, Rusyn J, Godbout C et al (2018) Diabetes and healing outcomes in lower extremity fractures: A systematic review. Injury 49(2):177–183. https://doi.org/10.1016/j.injury.2017.11.006. [published Online First: 20171120]
Fan Y, Wei F, Lang Y, Liu Y (2016) Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporos Int 27(1):219–228. https://doi.org/10.1007/s00198-015-3279-7 [published Online First: 20150812]
Article CAS PubMed Google Scholar
Haentjens P, Magaziner J, Colón-Emeric CS et al (2010) Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 152(6):380–390. https://doi.org/10.7326/0003-4819-152-6-201003160-00008
Article PubMed PubMed Central Google Scholar
Katsoulis M, Benetou V, Karapetyan T et al (2017) Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project. J Intern Med 281(3):300–310. https://doi.org/10.1111/joim.12586 [published Online First: 20170117]
Article CAS PubMed Google Scholar
Björnsdottir S, Clarke BL, Mannstadt M, Langdahl BL (2022) Male osteoporosis-what are the causes, diagnostic challenges, and management. Best Pract Res Clin Rheumatol 36(3):101766. https://doi.org/10.1016/j.berh.2022.101766 [published Online First: 20220809]
Meliante PG, Zoccali F, Cascone F et al (2023) Molecular pathology, oxidative stress, and biomarkers in obstructive sleep apnea. Int J Mol Sci 24(6). https://doi.org/10.3390/ijms24065478 [published Online First: 20230313]
Reutrakul S, Mokhlesi B (2017) Obstructive sleep apnea and diabetes: A state of the Art review. Chest 152(5):1070–1086. https://doi.org/10.1016/j.chest.2017.05.009 [published Online First: 20170517]
Article PubMed PubMed Central Google Scholar
Pamidi S, Aronsohn RS, Tasali E (2010) Obstructive sleep apnea: role in the risk and severity of diabetes. Best Pract Res Clin Endocrinol Metab 24(5):703–715. https://doi.org/10.1016/j.beem.2010.08.009
Article PubMed PubMed Central Google Scholar
Lu N, Yin F (2023) Relationship between Hyperuricemia-Waist phenotype and obstructive sleep apnea in type 2 diabetes mellitus. Diabetes Metab Syndr Obes 16:1505–1513. https://doi.org/10.2147/dmso.S408637 [published Online First: 20230523]
Article CAS PubMed PubMed Central Google Scholar
Uzkeser H, Yildirim K, Aktan B et al (2013) Bone mineral density in patients with obstructive sleep apnea syndrome. Sleep Breath 17(1):339–342. https://doi.org/10.1007/s11325-012-0698-y [published Online First: 20120402]
Tomiyama H, Okazaki R, Inoue D et al (2008) Link between obstructive sleep apnea and increased bone resorption in men. Osteoporos Int 19(8):1185–1192. https://doi.org/10.1007/s00198-007-0556-0 [published Online First: 20080126]
Article CAS PubMed Google Scholar
Upala S, Sanguankeo A, Congrete S (2016) Association between obstructive sleep apnea and osteoporosis: A systematic review and Meta-Analysis. Int J Endocrinol Metab 14(3):e36317. https://doi.org/10.5812/ijem.36317 [published Online First: 20160702]
Article PubMed PubMed Central Google Scholar
Tang SS, Liang CH, Liu YL et al (2022) Intermittent hypoxia is involved in gut microbial dysbiosis in type 2 diabetes mellitus and obstructive sleep apnea-hypopnea syndrome. World J Gastroenterol 28(21):2320–2333. https://doi.org/10.3748/wjg.v28.i21.2320
Article CAS PubMed PubMed Central Google Scholar
Gkastaris K, Goulis DG, Potoupnis M et al (2020) Obesity, osteoporosis and bone metabolism. J Musculoskelet Neuronal Interact 20(3):372–381
CAS PubMed PubMed Central Google Scholar
Rinonapoli G, Pace V, Ruggiero C et al (2021) Obesity and bone: A complex relationship. Int J Mol Sci 22(24). https://doi.org/10.3390/ijms222413662 [published Online First: 20211220]
Wang X, Zhang C, Zhao G et al (2024) Obesity and lipid metabolism in the development of osteoporosis (Review). Int J Mol Med 54(1). https://doi.org/10.3892/ijmm.2024.5385 [published Online First: 20240531]
He W, Li Q, Yang M et al (2015) Lower BMI cutoffs to define overweight and obesity in China. Obes (Silver Spring) 23(3):684–691. https://doi.org/10.1002/oby.20995 [published Online First: 20150122]
Jain S, Camacho P (2018) Use of bone turnover markers in the management of osteoporosis. Curr Opin Endocrinol Diabetes Obes 25(6):366–372. https://doi.org/10.1097/med.0000000000000446
Szulc P, Naylor K, Hoyle NR et al (2017) Use of CTX-I and PINP as bone turnover markers: National bone health alliance recommendations to standardize sample handling and patient Preparation to reduce pre-analytical variability. Osteoporos Int 28(9):2541–2556. https://doi.org/10.1007/s00198-017-4082-4 [published Online First: 20170619]
Article CAS PubMed Google Scholar
Song L, Liang X, Zhou Y (2014) Estrogen-mimicking isoflavone genistein prevents bone loss in a rat model of obstructive sleep apnea-hypopnea syndrome. Int J Clin Exp Pathol 7(4):1687–1694 [published Online First: 20140315]
PubMed PubMed Central Google Scholar
Kim G, Elnabawi O, Shin D, Pae EK (2016) Transient intermittent hypoxia exposure disrupts neonatal bone strength. Front Pediatr 4:15. https://doi.org/10.3389/fped.2016.00015 [published Online First: 20160307]
Article PubMed PubMed Central Google Scholar
Suresh S, Lee J, Noguchi CT (2020) Erythropoietin signaling in osteoblasts is required for normal bone formation and for bone loss during erythropoietin-stimulated erythropoiesis. Faseb J 34(9):11685–11697. https://doi.org/10.1096/fj.202000888R [published Online First: 20200715]
Article CAS PubMed Google Scholar
Zhang C, Li H, Li J et al (2023) Oxidative stress: A common pathological state in a high-risk population for osteoporosis. Biomed Pharmacother 163:114834. https://doi.org/10.1016/j.biopha.2023.114834 [published Online First: 20230508]
Article CAS PubMed Google Scholar
Zhang L, Jin L, Guo J et al (2020) Chronic intermittent hypobaric hypoxia enhances bone fracture healing. Front Endocrinol (Lausanne) 11:582670. https://doi.org/10.3389/fendo.2020.582670 [published Online First: 20210216]
Orriss IR, Arnett TR, George J, Witham MD (2016) Allopurinol and oxypurinol promote osteoblast differentiation and increase bone formation. Exp Cell Res 342(2):166–174. https://doi.org/10.1016/j.yexcr.2016.03.004 [published Online First: 20160308]
Article CAS PubMed PubMed Central Google Scholar
Sun H, Xu J, Wang Y et al (2023) Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact Mater 24:477–496. https://doi.org/10.1016/j.bioactmat.2022.12.021 [published Online First: 20230109]
Article CAS PubMed PubMed Central Google Scholar
Timon R, González-Custodio A, Vasquez-Bonilla A et al (2022) Intermittent hypoxia as a therapeutic tool to improve health parameters in older adults. Int J Environ Res Public Health 19(9). https://doi.org/10.3390/ijerph19095339 [published Online First: 20220427]
Zhang L, Yin Y, Guo J et al (2023) Chronic intermittent hypobaric hypoxia ameliorates osteoporosis after spinal cord injury through balancing osteoblast and osteoclast activities in rats. Front Endocrinol (Lausanne) 14:1035186. https://doi.org/10.3389/fendo.2023.1035186 [published Online First: 20230509]
Qiao J, Zhou M, Li Z et al (2019) Comparison of remote ischemic preconditioning and intermittent hypoxia training in fracture healing. Mol Med Rep 19(3):1867–1874. https://doi.org/10.3892/mmr.2018.9788 [published Online First: 20181224]
Comments (0)