The mediating role of BMI in the relationship between OSAHS and bone metabolism in male patients with T2DM

Compston JE, McClung MR, Leslie WD, Osteoporosis (2019) Lancet 393(10169):364–376. https://doi.org/10.1016/s0140-6736(18)32112-3

Khosla S, Samakkarnthai P, Monroe DG, Farr JN (2021) Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat Rev Endocrinol 17(11):685–697. https://doi.org/10.1038/s41574-021-00555-5 [published Online First: 20210913]

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Hulten V, Rasmussen N, Driessen JHM et al (2021) Fracture patterns in type 1 and type 2 diabetes mellitus: A narrative review of recent literature. Curr Osteoporos Rep 19(6):644–655. https://doi.org/10.1007/s11914-021-00715-6 [published Online First: 20211221]

Article  PubMed  PubMed Central  Google Scholar 

Yu EW, Thomas BJ, Brown JK, Finkelstein JS (2012) Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Min Res 27(1):119–124. https://doi.org/10.1002/jbmr.506

Article  Google Scholar 

Gortler H, Rusyn J, Godbout C et al (2018) Diabetes and healing outcomes in lower extremity fractures: A systematic review. Injury 49(2):177–183. https://doi.org/10.1016/j.injury.2017.11.006. [published Online First: 20171120]

Article  PubMed  Google Scholar 

Fan Y, Wei F, Lang Y, Liu Y (2016) Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporos Int 27(1):219–228. https://doi.org/10.1007/s00198-015-3279-7 [published Online First: 20150812]

Article  CAS  PubMed  Google Scholar 

Haentjens P, Magaziner J, Colón-Emeric CS et al (2010) Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 152(6):380–390. https://doi.org/10.7326/0003-4819-152-6-201003160-00008

Article  PubMed  PubMed Central  Google Scholar 

Katsoulis M, Benetou V, Karapetyan T et al (2017) Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project. J Intern Med 281(3):300–310. https://doi.org/10.1111/joim.12586 [published Online First: 20170117]

Article  CAS  PubMed  Google Scholar 

Björnsdottir S, Clarke BL, Mannstadt M, Langdahl BL (2022) Male osteoporosis-what are the causes, diagnostic challenges, and management. Best Pract Res Clin Rheumatol 36(3):101766. https://doi.org/10.1016/j.berh.2022.101766 [published Online First: 20220809]

Article  PubMed  Google Scholar 

Meliante PG, Zoccali F, Cascone F et al (2023) Molecular pathology, oxidative stress, and biomarkers in obstructive sleep apnea. Int J Mol Sci 24(6). https://doi.org/10.3390/ijms24065478 [published Online First: 20230313]

Reutrakul S, Mokhlesi B (2017) Obstructive sleep apnea and diabetes: A state of the Art review. Chest 152(5):1070–1086. https://doi.org/10.1016/j.chest.2017.05.009 [published Online First: 20170517]

Article  PubMed  PubMed Central  Google Scholar 

Pamidi S, Aronsohn RS, Tasali E (2010) Obstructive sleep apnea: role in the risk and severity of diabetes. Best Pract Res Clin Endocrinol Metab 24(5):703–715. https://doi.org/10.1016/j.beem.2010.08.009

Article  PubMed  PubMed Central  Google Scholar 

Lu N, Yin F (2023) Relationship between Hyperuricemia-Waist phenotype and obstructive sleep apnea in type 2 diabetes mellitus. Diabetes Metab Syndr Obes 16:1505–1513. https://doi.org/10.2147/dmso.S408637 [published Online First: 20230523]

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uzkeser H, Yildirim K, Aktan B et al (2013) Bone mineral density in patients with obstructive sleep apnea syndrome. Sleep Breath 17(1):339–342. https://doi.org/10.1007/s11325-012-0698-y [published Online First: 20120402]

Article  PubMed  Google Scholar 

Tomiyama H, Okazaki R, Inoue D et al (2008) Link between obstructive sleep apnea and increased bone resorption in men. Osteoporos Int 19(8):1185–1192. https://doi.org/10.1007/s00198-007-0556-0 [published Online First: 20080126]

Article  CAS  PubMed  Google Scholar 

Upala S, Sanguankeo A, Congrete S (2016) Association between obstructive sleep apnea and osteoporosis: A systematic review and Meta-Analysis. Int J Endocrinol Metab 14(3):e36317. https://doi.org/10.5812/ijem.36317 [published Online First: 20160702]

Article  PubMed  PubMed Central  Google Scholar 

Tang SS, Liang CH, Liu YL et al (2022) Intermittent hypoxia is involved in gut microbial dysbiosis in type 2 diabetes mellitus and obstructive sleep apnea-hypopnea syndrome. World J Gastroenterol 28(21):2320–2333. https://doi.org/10.3748/wjg.v28.i21.2320

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gkastaris K, Goulis DG, Potoupnis M et al (2020) Obesity, osteoporosis and bone metabolism. J Musculoskelet Neuronal Interact 20(3):372–381

CAS  PubMed  PubMed Central  Google Scholar 

Rinonapoli G, Pace V, Ruggiero C et al (2021) Obesity and bone: A complex relationship. Int J Mol Sci 22(24). https://doi.org/10.3390/ijms222413662 [published Online First: 20211220]

Wang X, Zhang C, Zhao G et al (2024) Obesity and lipid metabolism in the development of osteoporosis (Review). Int J Mol Med 54(1). https://doi.org/10.3892/ijmm.2024.5385 [published Online First: 20240531]

He W, Li Q, Yang M et al (2015) Lower BMI cutoffs to define overweight and obesity in China. Obes (Silver Spring) 23(3):684–691. https://doi.org/10.1002/oby.20995 [published Online First: 20150122]

Article  Google Scholar 

Jain S, Camacho P (2018) Use of bone turnover markers in the management of osteoporosis. Curr Opin Endocrinol Diabetes Obes 25(6):366–372. https://doi.org/10.1097/med.0000000000000446

Article  PubMed  Google Scholar 

Szulc P, Naylor K, Hoyle NR et al (2017) Use of CTX-I and PINP as bone turnover markers: National bone health alliance recommendations to standardize sample handling and patient Preparation to reduce pre-analytical variability. Osteoporos Int 28(9):2541–2556. https://doi.org/10.1007/s00198-017-4082-4 [published Online First: 20170619]

Article  CAS  PubMed  Google Scholar 

Song L, Liang X, Zhou Y (2014) Estrogen-mimicking isoflavone genistein prevents bone loss in a rat model of obstructive sleep apnea-hypopnea syndrome. Int J Clin Exp Pathol 7(4):1687–1694 [published Online First: 20140315]

PubMed  PubMed Central  Google Scholar 

Kim G, Elnabawi O, Shin D, Pae EK (2016) Transient intermittent hypoxia exposure disrupts neonatal bone strength. Front Pediatr 4:15. https://doi.org/10.3389/fped.2016.00015 [published Online First: 20160307]

Article  PubMed  PubMed Central  Google Scholar 

Suresh S, Lee J, Noguchi CT (2020) Erythropoietin signaling in osteoblasts is required for normal bone formation and for bone loss during erythropoietin-stimulated erythropoiesis. Faseb J 34(9):11685–11697. https://doi.org/10.1096/fj.202000888R [published Online First: 20200715]

Article  CAS  PubMed  Google Scholar 

Zhang C, Li H, Li J et al (2023) Oxidative stress: A common pathological state in a high-risk population for osteoporosis. Biomed Pharmacother 163:114834. https://doi.org/10.1016/j.biopha.2023.114834 [published Online First: 20230508]

Article  CAS  PubMed  Google Scholar 

Zhang L, Jin L, Guo J et al (2020) Chronic intermittent hypobaric hypoxia enhances bone fracture healing. Front Endocrinol (Lausanne) 11:582670. https://doi.org/10.3389/fendo.2020.582670 [published Online First: 20210216]

Article  PubMed  Google Scholar 

Orriss IR, Arnett TR, George J, Witham MD (2016) Allopurinol and oxypurinol promote osteoblast differentiation and increase bone formation. Exp Cell Res 342(2):166–174. https://doi.org/10.1016/j.yexcr.2016.03.004 [published Online First: 20160308]

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun H, Xu J, Wang Y et al (2023) Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact Mater 24:477–496. https://doi.org/10.1016/j.bioactmat.2022.12.021 [published Online First: 20230109]

Article  CAS  PubMed  PubMed Central  Google Scholar 

Timon R, González-Custodio A, Vasquez-Bonilla A et al (2022) Intermittent hypoxia as a therapeutic tool to improve health parameters in older adults. Int J Environ Res Public Health 19(9). https://doi.org/10.3390/ijerph19095339 [published Online First: 20220427]

Zhang L, Yin Y, Guo J et al (2023) Chronic intermittent hypobaric hypoxia ameliorates osteoporosis after spinal cord injury through balancing osteoblast and osteoclast activities in rats. Front Endocrinol (Lausanne) 14:1035186. https://doi.org/10.3389/fendo.2023.1035186 [published Online First: 20230509]

Article  PubMed  Google Scholar 

Qiao J, Zhou M, Li Z et al (2019) Comparison of remote ischemic preconditioning and intermittent hypoxia training in fracture healing. Mol Med Rep 19(3):1867–1874. https://doi.org/10.3892/mmr.2018.9788 [published Online First: 20181224]

Comments (0)

No login
gif