Levine H, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum Reprod Update Mar. 2023;1(2):157–76. https://doi.org/10.1093/humupd/dmac035.
Agarwal A, Majzoub A, Parekh N, Henkel R. A schematic overview of the current status of male infertility practice. World J Mens Health Jul. 2020;38(3):308–22. https://doi.org/10.5534/wjmh.190068.
Wu ZG, et al. Analysis of semen quality of 38 905 infertile male patients during 2008–2016 in Wenzhou, China. Asian Journal of Andrology. May-Jun. 2021;23(3):314–8. https://doi.org/10.4103/aja.aja_83_20.
World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen. 6th ed. World Health Organization. 2021.
World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th. ed. World Health Organization. 2010.
Boursier A, et al. Necrozoospermia: the tree that hides the forest. Androl May. 2022;10(4):642–59. https://doi.org/10.1111/andr.13172.
Ferlin A, et al. Heat shock protein and heat shock factor expression in sperm: relation to oligozoospermia and varicocele. J Urol Mar. 2010;183(3):1248–52. https://doi.org/10.1016/j.juro.2009.11.009.
Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl Mar-Apr. 2016;18(2):186–93. https://doi.org/10.4103/1008-682x.170441.
Dumont A et al. Apr. [Necrozoospermia: From etiologic diagnosis to therapeutic management]. Gynecol Obstet Fertil Senol 2017;45(4):238–248. https://doi.org/10.1016/j.gofs.2017.01.010
Mallidis C, et al. Necrospermia and chronic spinal cord injury. Fertility Steril Aug. 2000;74(2):221–7. https://doi.org/10.1016/S0015-0282(00)00650-6.
Fang S, Baker HW. Male infertility and adult polycystic kidney disease are associated with necrospermia. Fertil Steril Mar. 2003;79(3):643–4. https://doi.org/10.1016/s0015-0282(02)04759-3.
Lee R, et al. Value of serum antisperm antibodies in diagnosing obstructive azoospermia. J Urol Jan. 2009;181(1):264–9. https://doi.org/10.1016/j.juro.2008.09.004.
Demirkol MK, Barut O, Dogan NT, Hamarat MB, Resim S. At what age threshold does the decline in semen parameters begin? J Coll Physicians Surg Pak Jan. 2021;31(1):4–7. https://doi.org/10.29271/jcpsp.2021.01.4.
Daoud S, et al. Routine assessment of occupational exposure and its relation to semen quality in infertile men: a cross-sectional study. Turk J Med Sci Jun. 2017;12(3):902–7. https://doi.org/10.3906/sag-1605-47.
Brahem S, Jellad S, Ibala S, Saad A, Mehdi M. DNA fragmentation status in patients with necrozoospermia. Syst Biol Reprod Med Dec. 2012;58(6):319–23. https://doi.org/10.3109/19396368.2012.710869.
Zhang EC, et al. Novel insights into necrozoospermia from a single-center study: reference ranges, possible etiology, and impact on male fertility. Asian J Androl Sep. 2024;1(5):528–34. https://doi.org/10.4103/aja202422.
Bellvé AR. Purification, culture, and fractionation of spermatogenic cells. Methods Enzymol. 1993;225:84–113. https://doi.org/10.1016/0076-6879(93)25009-q.
Bellve AR, Cavicchia JC, Millette CF, O’Brien DA, Bhatnagar YM, Dym M. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol Jul. 1977;74(1):68–85. https://doi.org/10.1083/jcb.74.1.68.
Onn I, Heidinger-Pauli JM, Guacci V, Unal E, Koshland DE. Sister chromatid cohesion: a simple concept with a complex reality. Annu Rev Cell Dev Biol. 2008;24:105–29. https://doi.org/10.1146/annurev.cellbio.24.110707.175350.
Article CAS PubMed Google Scholar
Nasmyth K, Haering CH. Cohesin: its roles and mechanisms. Annu Rev Genet. 2009;43:525–58. https://doi.org/10.1146/annurev-genet-102108-134233.
Article CAS PubMed Google Scholar
Biswas U, Stevense M, Jessberger R. SMC1α substitutes for many meiotic functions of SMC1β but cannot protect telomeres from damage. Curr Biol Jan. 2018;22(2):249–e2614. https://doi.org/10.1016/j.cub.2017.12.020.
Nicholls PK, et al. Mammalian germ cells are determined after PGC colonization of the nascent gonad. Proc Natl Acad Sci U S Dec. 2019;17(51):25677–87. https://doi.org/10.1073/pnas.1910733116.
Revenkova E, et al. Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol Jun. 2004;6(6):555–62. https://doi.org/10.1038/ncb1135.
Adelfalk C, et al. Cohesin SMC1beta protects telomeres in meiocytes. J Cell Biol Oct. 2009;19(2):185–99. https://doi.org/10.1083/jcb.200808016.
Kleppe L, Edvardsen RB, Furmanek T, Andersson E, Juanchich A, Wargelius A. bmp15l, Figla, smc1bl, and larp6l are preferentially expressed in germ cells in Atlantic salmon (Salmo Salar L). Mol Reprod Dev Jan. 2017;84(1):76–87. https://doi.org/10.1002/mrd.22755.
Islam KN, Modi MM, Siegfried KR. The zebrafish meiotic cohesin complex protein Smc1b is required for key events in meiotic prophase I. Front Cell Dev Biol. 2021;9:714245. https://doi.org/10.3389/fcell.2021.714245.
Article PubMed PubMed Central Google Scholar
Takabayashi S, Yamauchi Y, Tsume M, Noguchi M, Katoh H. A spontaneous smc1b mutation causes cohesin protein dysfunction and sterility in mice. Exp Biol Med (Maywood) Aug. 2009;234(8):994–1001. https://doi.org/10.3181/0808-RM-244.
França MM, Mendonca BB. Genetics of ovarian insufficiency and defects of folliculogenesis. Best Pract Res Clin Endocrinol Metab Jan. 2022;36(1):101594. https://doi.org/10.1016/j.beem.2021.101594.
Murdoch B, et al. Altered cohesin gene dosage affects mammalian meiotic chromosome structure and behavior. PLoS Genet. 2013;9(2):e1003241. https://doi.org/10.1371/journal.pgen.1003241.
Article CAS PubMed PubMed Central Google Scholar
Boukaba A, et al. Ectopic expression of meiotic cohesin generates chromosome instability in cancer cell line. Proc Natl Acad Sci U S Oct. 2022;4(40):e2204071119. https://doi.org/10.1073/pnas.2204071119.
Farkouh A, Salvio G, Kuroda S, Saleh R, Vogiatzi P, Agarwal A. Sperm DNA integrity and male infertility: a narrative review and guide for the reproductive physicians. Translational Androl Urol. 2022;11(7):1023–44. https://doi.org/10.21037/tau-22-149.
Zhu C, et al. Influence of sperm DNA fragmentation on the clinical outcome of in vitro fertilization-embryo transfer (IVF-ET). Front Endocrinol (Lausanne). 2022;13:945242. https://doi.org/10.3389/fendo.2022.945242.
McQueen DB, Zhang J, Robins JC. Sperm DNA fragmentation and recurrent pregnancy loss: a systematic review and meta-analysis. Fertil Steril Jul. 2019;112(1):54–e603. https://doi.org/10.1016/j.fertnstert.2019.03.003.
Samplaski MK, et al. The relationship between sperm viability and DNA fragmentation rates. Reprod Biol Endocrinol May. 2015;14:13:42. https://doi.org/10.1186/s12958-015-0035-y.
Aghazarian A, Huf W, Pflüger H, Klatte T. Standard semen parameters vs. sperm kinematics to predict sperm DNA damage. World J Mens Health Jan. 2021;39(1):116–22. https://doi.org/10.5534/wjmh.190095.
Homa ST, et al. A comparison between two assays for measuring seminal oxidative stress and their relationship with sperm DNA fragmentation and semen parameters. Genes (Basel) Mar. 2019;19(3). https://doi.org/10.3390/genes10030236.
Ribas-Maynou J, Yeste M, Becerra-Tomás N, Aston KI, James ER, Salas-Huetos A. Clinical implications of sperm DNA damage in IVF and ICSI: updated systematic review and meta-analysis. Biol Rev Camb Philos Soc Aug. 2021;96(4):1284–300. https://doi.org/10.1111/brv.12700.
Comments (0)