Identification of an Mutation Associated With Necrozoospermia and Failure of Testi-ICSI

Levine H, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum Reprod Update Mar. 2023;1(2):157–76. https://doi.org/10.1093/humupd/dmac035.

Article  Google Scholar 

Agarwal A, Majzoub A, Parekh N, Henkel R. A schematic overview of the current status of male infertility practice. World J Mens Health Jul. 2020;38(3):308–22. https://doi.org/10.5534/wjmh.190068.

Article  Google Scholar 

Wu ZG, et al. Analysis of semen quality of 38 905 infertile male patients during 2008–2016 in Wenzhou, China. Asian Journal of Andrology. May-Jun. 2021;23(3):314–8. https://doi.org/10.4103/aja.aja_83_20.

Article  Google Scholar 

World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen. 6th ed. World Health Organization. 2021.

World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th. ed. World Health Organization. 2010.

Boursier A, et al. Necrozoospermia: the tree that hides the forest. Androl May. 2022;10(4):642–59. https://doi.org/10.1111/andr.13172.

Article  Google Scholar 

Ferlin A, et al. Heat shock protein and heat shock factor expression in sperm: relation to oligozoospermia and varicocele. J Urol Mar. 2010;183(3):1248–52. https://doi.org/10.1016/j.juro.2009.11.009.

Article  CAS  Google Scholar 

Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl Mar-Apr. 2016;18(2):186–93. https://doi.org/10.4103/1008-682x.170441.

Article  CAS  Google Scholar 

Dumont A et al. Apr. [Necrozoospermia: From etiologic diagnosis to therapeutic management]. Gynecol Obstet Fertil Senol 2017;45(4):238–248. https://doi.org/10.1016/j.gofs.2017.01.010

Mallidis C, et al. Necrospermia and chronic spinal cord injury. Fertility Steril Aug. 2000;74(2):221–7. https://doi.org/10.1016/S0015-0282(00)00650-6.

Article  CAS  Google Scholar 

Fang S, Baker HW. Male infertility and adult polycystic kidney disease are associated with necrospermia. Fertil Steril Mar. 2003;79(3):643–4. https://doi.org/10.1016/s0015-0282(02)04759-3.

Article  Google Scholar 

Lee R, et al. Value of serum antisperm antibodies in diagnosing obstructive azoospermia. J Urol Jan. 2009;181(1):264–9. https://doi.org/10.1016/j.juro.2008.09.004.

Article  CAS  Google Scholar 

Demirkol MK, Barut O, Dogan NT, Hamarat MB, Resim S. At what age threshold does the decline in semen parameters begin? J Coll Physicians Surg Pak Jan. 2021;31(1):4–7. https://doi.org/10.29271/jcpsp.2021.01.4.

Article  Google Scholar 

Daoud S, et al. Routine assessment of occupational exposure and its relation to semen quality in infertile men: a cross-sectional study. Turk J Med Sci Jun. 2017;12(3):902–7. https://doi.org/10.3906/sag-1605-47.

Article  CAS  Google Scholar 

Brahem S, Jellad S, Ibala S, Saad A, Mehdi M. DNA fragmentation status in patients with necrozoospermia. Syst Biol Reprod Med Dec. 2012;58(6):319–23. https://doi.org/10.3109/19396368.2012.710869.

Article  CAS  Google Scholar 

Zhang EC, et al. Novel insights into necrozoospermia from a single-center study: reference ranges, possible etiology, and impact on male fertility. Asian J Androl Sep. 2024;1(5):528–34. https://doi.org/10.4103/aja202422.

Article  CAS  Google Scholar 

Bellvé AR. Purification, culture, and fractionation of spermatogenic cells. Methods Enzymol. 1993;225:84–113. https://doi.org/10.1016/0076-6879(93)25009-q.

Article  PubMed  Google Scholar 

Bellve AR, Cavicchia JC, Millette CF, O’Brien DA, Bhatnagar YM, Dym M. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol Jul. 1977;74(1):68–85. https://doi.org/10.1083/jcb.74.1.68.

Article  CAS  Google Scholar 

Onn I, Heidinger-Pauli JM, Guacci V, Unal E, Koshland DE. Sister chromatid cohesion: a simple concept with a complex reality. Annu Rev Cell Dev Biol. 2008;24:105–29. https://doi.org/10.1146/annurev.cellbio.24.110707.175350.

Article  CAS  PubMed  Google Scholar 

Nasmyth K, Haering CH. Cohesin: its roles and mechanisms. Annu Rev Genet. 2009;43:525–58. https://doi.org/10.1146/annurev-genet-102108-134233.

Article  CAS  PubMed  Google Scholar 

Biswas U, Stevense M, Jessberger R. SMC1α substitutes for many meiotic functions of SMC1β but cannot protect telomeres from damage. Curr Biol Jan. 2018;22(2):249–e2614. https://doi.org/10.1016/j.cub.2017.12.020.

Article  CAS  Google Scholar 

Nicholls PK, et al. Mammalian germ cells are determined after PGC colonization of the nascent gonad. Proc Natl Acad Sci U S Dec. 2019;17(51):25677–87. https://doi.org/10.1073/pnas.1910733116.

Article  CAS  Google Scholar 

Revenkova E, et al. Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol Jun. 2004;6(6):555–62. https://doi.org/10.1038/ncb1135.

Article  CAS  Google Scholar 

Adelfalk C, et al. Cohesin SMC1beta protects telomeres in meiocytes. J Cell Biol Oct. 2009;19(2):185–99. https://doi.org/10.1083/jcb.200808016.

Article  CAS  Google Scholar 

Kleppe L, Edvardsen RB, Furmanek T, Andersson E, Juanchich A, Wargelius A. bmp15l, Figla, smc1bl, and larp6l are preferentially expressed in germ cells in Atlantic salmon (Salmo Salar L). Mol Reprod Dev Jan. 2017;84(1):76–87. https://doi.org/10.1002/mrd.22755.

Article  CAS  Google Scholar 

Islam KN, Modi MM, Siegfried KR. The zebrafish meiotic cohesin complex protein Smc1b is required for key events in meiotic prophase I. Front Cell Dev Biol. 2021;9:714245. https://doi.org/10.3389/fcell.2021.714245.

Article  PubMed  PubMed Central  Google Scholar 

Takabayashi S, Yamauchi Y, Tsume M, Noguchi M, Katoh H. A spontaneous smc1b mutation causes cohesin protein dysfunction and sterility in mice. Exp Biol Med (Maywood) Aug. 2009;234(8):994–1001. https://doi.org/10.3181/0808-RM-244.

Article  CAS  Google Scholar 

França MM, Mendonca BB. Genetics of ovarian insufficiency and defects of folliculogenesis. Best Pract Res Clin Endocrinol Metab Jan. 2022;36(1):101594. https://doi.org/10.1016/j.beem.2021.101594.

Article  CAS  Google Scholar 

Murdoch B, et al. Altered cohesin gene dosage affects mammalian meiotic chromosome structure and behavior. PLoS Genet. 2013;9(2):e1003241. https://doi.org/10.1371/journal.pgen.1003241.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boukaba A, et al. Ectopic expression of meiotic cohesin generates chromosome instability in cancer cell line. Proc Natl Acad Sci U S Oct. 2022;4(40):e2204071119. https://doi.org/10.1073/pnas.2204071119.

Article  CAS  Google Scholar 

Farkouh A, Salvio G, Kuroda S, Saleh R, Vogiatzi P, Agarwal A. Sperm DNA integrity and male infertility: a narrative review and guide for the reproductive physicians. Translational Androl Urol. 2022;11(7):1023–44. https://doi.org/10.21037/tau-22-149.

Article  Google Scholar 

Zhu C, et al. Influence of sperm DNA fragmentation on the clinical outcome of in vitro fertilization-embryo transfer (IVF-ET). Front Endocrinol (Lausanne). 2022;13:945242. https://doi.org/10.3389/fendo.2022.945242.

Article  PubMed  Google Scholar 

McQueen DB, Zhang J, Robins JC. Sperm DNA fragmentation and recurrent pregnancy loss: a systematic review and meta-analysis. Fertil Steril Jul. 2019;112(1):54–e603. https://doi.org/10.1016/j.fertnstert.2019.03.003.

Article  Google Scholar 

Samplaski MK, et al. The relationship between sperm viability and DNA fragmentation rates. Reprod Biol Endocrinol May. 2015;14:13:42. https://doi.org/10.1186/s12958-015-0035-y.

Article  CAS  Google Scholar 

Aghazarian A, Huf W, Pflüger H, Klatte T. Standard semen parameters vs. sperm kinematics to predict sperm DNA damage. World J Mens Health Jan. 2021;39(1):116–22. https://doi.org/10.5534/wjmh.190095.

Article  Google Scholar 

Homa ST, et al. A comparison between two assays for measuring seminal oxidative stress and their relationship with sperm DNA fragmentation and semen parameters. Genes (Basel) Mar. 2019;19(3). https://doi.org/10.3390/genes10030236.

Ribas-Maynou J, Yeste M, Becerra-Tomás N, Aston KI, James ER, Salas-Huetos A. Clinical implications of sperm DNA damage in IVF and ICSI: updated systematic review and meta-analysis. Biol Rev Camb Philos Soc Aug. 2021;96(4):1284–300. https://doi.org/10.1111/brv.12700.

Article  CAS 

Comments (0)

No login
gif