Maternal Thrombophilia Disrupts Fetal Redox Homeostasis

James AH, Jamison MG, Brancazio LR, Myers ER. Venous thromboembolism during pregnancy and the postpartum period: incidence, risk factors, and mortality. Am J Obstet Gynecol. 2006;194:1311–5. https://doi.org/10.1016/j.ajog.2005.11.008.

Article  PubMed  Google Scholar 

Bremme KA. Haemostatic changes in pregnancy. Best Pract Res Clin Haematol. 2003;16:153–68. https://doi.org/10.1016/s1521-6926(03)00021-5.

Article  PubMed  Google Scholar 

Devis P, Knuttinen MG. Deep venous thrombosis in pregnancy: incidence, pathogenesis and endovascular management. Cardiovasc Diagn Ther. 2017;7:S309–19. https://doi.org/10.21037/2Fcdt.2017.10.08

Article  PubMed  PubMed Central  Google Scholar 

Kupferminc MJ. Thrombophilia and pregnancy. Curr Pharm Des. 2005;11:735–48. https://doi.org/10.1186/1477-7827-1-111.

Article  CAS  PubMed  Google Scholar 

Burton GJ, Hempstock J, Jauniaux E. Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod Biomed Online. 2003;6:84–96. https://doi.org/10.1016/s1472-6483(10)62060-3.

Article  PubMed  Google Scholar 

Lyall F, Young A, Greer IA. Nitric oxide concentrations are increased in the fetoplacental circulation in preeclampsia. Am J Obstet Gynecol. 1995;173:714–8. https://doi.org/10.1016/0002-9378(95)90328-3.

Article  CAS  PubMed  Google Scholar 

Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 5th ed. Oxford: Academic Oxford; 2015. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001.

Book  Google Scholar 

Myatt L, Review. Reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta. 2010;31:S66–9. https://doi.org/10.1016/j.placenta.2009.12.021.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu F, Tian FJ, Lin Y. Oxidative stress in placenta: health and diseases. Biomed Res Int. 2015;293271. https://doi.org/10.1155/2015/293271.

Fukase M, Watanabe N, Yamanouchi K, Tsutsumi S, Nagase S. The change of oxidative stress in maternal blood during pregnancy. Reprod Sci. 2022;29(9):2580–5. https://doi.org/10.1007/s43032-022-00848-8.

Article  CAS  PubMed  Google Scholar 

Thompson LP, Al-Hasan Y. Impact of oxidative stress in fetal programming. J Pregnancy. 2012;582748. https://doi.org/10.1155/2F2012/2F582748.

Hsieh TT, Chen SF, Lo LM, Li MJ, Yeh YL, Hung TH. The association between maternal oxidative stress at mid-gestation and subsequent pregnancy complications. Reprod Sci. 2012;19:505–12. https://doi.org/10.1177/1933719111426601.

Article  PubMed  Google Scholar 

Bogdanovic-Pristov J, Spasojevic I, Mikovic Z, Mandic V, Cerovic N, Spasic M. Antioxidative defense enzymes in placenta protect placenta and fetus in inherited thrombophilia from hydrogen peroxide. Oxid Med Cell Longev. 2009;2:14–8. https://doi.org/10.4161/2Foxim.2.1.7705.

Article  Google Scholar 

Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998;25:434–56. https://doi.org/10.1016/s0891-5849(98)00092-6.

Article  CAS  PubMed  Google Scholar 

Bardanzellu F, Fanos V. The choice of amniotic fluid in metabolomics for the monitoring of fetus health - update. Expert Rev Proteom. 2019;16:487–99. https://doi.org/10.1080/14789450.2019.1615892.

Article  CAS  Google Scholar 

Yu L. Human amniotic fluid-derived and amniotic membrane-derived stem cells. In: Zhao CR, editor. Stem cells: basics and clinical translation. Dordrecht: Springer; 2015. pp. 29–66. https://doi.org/10.1007/978-94-017-7273-0_2.

Chapter  Google Scholar 

Fenech M. The in vitro micronucleus technique. Mutat Res. 2000;455:81–95. https://doi.org/10.1016/s0027-5107(00)00065-8.

Article  CAS  PubMed  Google Scholar 

Auclair C, Voisin E. Nitroblue tetrazolium reduction. In: Greenwald RA, editor. Handbook of methods for oxygen radical research. Boca Raton: CRC; 1985. pp. 123–32.

Google Scholar 

Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods. 1980;38:161–70. https://doi.org/10.1016/0022-1759(80)90340-3.

Article  CAS  PubMed  Google Scholar 

Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite and [15 N]nitrate in biological fluids. Anal Biochem. 1982;126:131–38. https://doi.org/10.1016/0003-2697(82)90118-x.

Article  CAS  PubMed  Google Scholar 

Riordan JF, Vallee BL. Nitration with tetranitromethane. In: Hirs CHW, Timasheff SN, editors. Methods in enzymology. New York: Academic; 1972. pp. 515–21.

Google Scholar 

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–58. https://doi.org/10.1016/0003-2697(79)90738-3.

Article  CAS  PubMed  Google Scholar 

Beutler E. Reduced glutathione (GSH). In: Beutler E, editor. Red cell metabolism, a manual of biochemical methods. New York: Grune and Straton; 1975. pp. 112–4.

Google Scholar 

Beutler E. Oxidized glutathione (GSSG). In: Beutler E, editor. Red cell metabolism, a manual of biochemical methods. New York: Grune and Straton; 1975. pp. 115–7.

Google Scholar 

Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. Semin Cell Dev Biol. 2022;131:66–77. https://doi.org/10.1016/j.semcdb.2022.03.039.

Article  CAS  PubMed  Google Scholar 

Kinzler WL, Prasad V, Ananth CV, for the New Jersey-Placental Abruption Study Investigators. The effect of maternal thrombophilia on placental abruption: histologic correlates. J Matern Fetal Neonatal Med. 2009;22:243–8. https://doi.org/10.1080/14767050802551795.

Huang J, Liu Y, Yang H, Xu Y, Lv W. The effect of serum β-human chorionic gonadotropin on pregnancy complications and adverse pregnancy outcomes: a systematic review and meta-analysis. Comput Math Methods Med. 2022;8315519. https://doi.org/10.1155/2022/8315519.

Yang Y, Abdulhasan M, Awonuga A, Bolnick A, Puscheck EE, Rappolee DA. Hypoxic stress forces adaptive and maladaptive placental stress responses in early pregnancy. Birth Defects Res. 2017;109:1330–44. https://doi.org/10.1002/bdr2.1149.

Article  CAS  PubMed  Google Scholar 

Silvestro S, Calcaterra V, Pelizzo G, Bramanti P, Mazzon E. Prenatal hypoxia and placental oxidative stress: insights from animal models to clinical evidences. Antioxid (Basel). 2020;9:414. https://doi.org/10.3390/antiox9050414.

Article  CAS  Google Scholar 

Thakor AS, Richter HG, Kane AD, Dunster C, Kelly FJ, Poston L, Giussani DA. Redox modulation of the fetal cardiovascular defence to hypoxaemia. J Physiol. 2010;588:4235–47. https://doi.org/10.1113/jphysiol.2010.196402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thompson LP, Dong Y. Chronic hypoxia decreases endothelial nitric oxide synthase protein expression in fetal Guinea pig hearts. J Soc Gynecol Investig. 2005;12(6):388–95. https://doi.org/10.1016/j.jsgi.2005.04.011.

Article  CAS  PubMed  Google Scholar 

Chen YF, Wang ZH, Chen ZK, Lv GR, Ferrari M. Intermittent maternal hypoxia has an influence on regional expression of endothelial nitric oxide synthase in fetal arteries of rabbits. Pediatr Res. 2013;73(6):706–12. https://doi.org/10.1038/pr.2013.39.

Article  CAS  PubMed  Google Scholar 

Janaszak-Jasiecka A, Siekierzycka A, Płoska A, Dobrucki IT, Kalinowski L. Endothelial dysfunction driven by hypoxia - The influence of oxygen deficiency on NO bioavailability. Biomolecules. 2021;11(7):982. https://doi.org/10.3390/biom11070982.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giussani DA. The fetal brain sparing response to hypoxia: physiological mechanisms. J Physiol. 2016;594(5):1215–30. https://doi.org/10.1113/jp271099.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sutovska H, Babarikova K, Zeman M, Molcan L. Prenatal hypoxia affects foetal cardiovascular regulatory mechanisms in a sex- and circadian-dependent manner: A review. Int J Mol Sci. 2022;23(5):2885. https://doi.org/10.3390/ijms23052885.

Article  CAS 

Comments (0)

No login
gif