Stolzing A, Sellers D, Llewelyn O, Scutt A. Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs. 2010;191:453–65.
Article CAS PubMed Google Scholar
Stolzing A, Bauer E, Scutt A. Suspension cultures of bone-marrow-derived mesenchymal stem cells: effects of donor age and glucose level. Stem Cells Dev. 2012;21:2718–23.
Article CAS PubMed Google Scholar
Salem HK, Thiemermann C. Mesenchymal stromal cells: current Understanding and clinical status. Stem Cells. 2010;28:585–96.
Article CAS PubMed Google Scholar
He S, Nakada D, Morrison SJ. Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol. 2009;25:377–406.
Article CAS PubMed Google Scholar
Christ B, Stock P. Mesenchymal stem cell-derived hepatocytes for functional liver replacement. Front Immunol. 2012;3:168.
Article PubMed PubMed Central Google Scholar
Chou S-H, Lin S-Z, Kuo W-W, Pai P, Lin J-Y, Lai C-H, et al. Mesenchymal stem cell insights: prospects in cardiovascular therapy. Cell Transpl. 2014;23:513–29.
Keats E, Khan ZA. Unique responses of stem cell-derived vascular endothelial and mesenchymal cells to high levels of glucose. PLoS ONE. 2012;7:e38752.
Article CAS PubMed PubMed Central Google Scholar
Phadnis SM, Ghaskadbi SM, Hardikar AA, Bhonde RR. Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment. Rev Diabet Stud. 2009;6:260–70.
Teixeira FG, Panchalingam KM, Anjo SI, Manadas B, Pereira R, Sousa N, et al. Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of wharton jelly mesenchymal stem cell secretome? Stem Cell Res Ther. 2015;6:133.
Article PubMed PubMed Central Google Scholar
Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T. Umbilical cord as prospective source for mesenchymal stem Cell-Based therapy. Stem Cells Int. 2016;2016:6901286.
Article PubMed PubMed Central Google Scholar
Vadalà G, Russo F, Ambrosio L, Loppini M, Denaro V. Stem cells sources for intervertebral disc regeneration. World J Stem Cells. 2016;8:185–201.
Article PubMed PubMed Central Google Scholar
Musiał-Wysocka A, Kot M, Sułkowski M, Badyra B, Majka M. Molecular and functional verification of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) pluripotency. Int J Mol Sci. 2019;20.
Witkowska-Zimny M, Wrobel E. Perinatal sources of mesenchymal stem cells: Wharton’s jelly, Amnion and chorion. Cell Mol Biol Lett. 2011;16:493–514.
Article PubMed PubMed Central Google Scholar
Kim D-W, Staples M, Shinozuka K, Pantcheva P, Kang S-D, Borlongan CV. Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci. 2013;14:11692–712.
Article PubMed PubMed Central Google Scholar
Cutler AJ, Limbani V, Girdlestone J, Navarrete CV. Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. J Immunol. 2010;185:6617–23.
Article CAS PubMed Google Scholar
Naito AT, Okada S, Minamino T, Iwanaga K, Liu M-L, Sumida T, et al. Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury. Circ Res. 2010;106:1692–702.
Article CAS PubMed Google Scholar
Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, et al. p53 regulates cell cycle and MicroRNAs to promote differentiation of human embryonic stem cells. PLoS Biol. 2012;10:e1001268.
Article CAS PubMed PubMed Central Google Scholar
Wu Y, Lee S, Bobadilla S, Duan SZ, Liu X. High glucose-induced p53 phosphorylation contributes to impairment of endothelial antioxidant system. Biochim Biophys Acta Mol Basis Dis. 2017;1863:2355–62.
Article CAS PubMed Google Scholar
Meletis K, Wirta V, Hede S-M, Nistér M, Lundeberg J, Frisén J. p53 suppresses the self-renewal of adult neural stem cells. Development. 2006;133:363–9.
Article CAS PubMed Google Scholar
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, et al. Protein damage, repair and proteolysis. Mol Aspects Med. 2014;35:1–71.
Article CAS PubMed Google Scholar
Wang J, Han F, Lee S-W, Wu J, Chan C-H, Zhang X, et al. E3-ligase Skp2 regulates β-catenin expression and maintains hematopoietic stem cell homing. Biochem Biophys Res Commun. 2014;445:566–71.
Article CAS PubMed Google Scholar
Shu L, Zhang H, Boyce BF, Xing L. Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration. J Bone Min Res. 2013;28:1925–35.
Wang D, Bu F, Zhang W. The role of ubiquitination in regulating embryonic stem cell maintenance and Cancer development. Int J Mol Sci. 2019;20.
Lamb JR, Tugendreich S, Hieter P. Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci. 1995;20:257–9.
Article CAS PubMed Google Scholar
Ye Z, Needham PG, Estabrooks SK, Whitaker SK, Garcia BL, Misra S, et al. Symmetry breaking during homodimeric assembly activates an E3 ubiquitin ligase. Sci Rep. 2017;7:1789.
Article PubMed PubMed Central Google Scholar
VanPelt J, Page RC. Unraveling the CHIP:Hsp70 complex as an information processor for protein quality control. Biochim Biophys Acta Proteins Proteom. 2017;1865:133–41.
Article CAS PubMed Google Scholar
Ali A, Kuo W-W, Kuo C-H, Lo J-F, Chen MYC, Daddam JR, et al. E3 ligase activity of carboxyl terminus of Hsc70 interacting protein (CHIP) in Wharton’s jelly derived mesenchymal stem cells improves their persistence under hyperglycemic stress and promotes the prophylactic effects against diabetic cardiac damages. Bioeng Transl Med. 2021;6:e10234.
Article CAS PubMed PubMed Central Google Scholar
Ali A, Shibu MA, Kuo C-H, Lo J-F, Chen R-J, Day CH, et al. CHIP-overexpressing Wharton’s jelly-derived mesenchymal stem cells attenuate hyperglycemia-induced oxidative stress-mediated kidney injuries in diabetic rats. Free Radic Biol Med. 2021;173:70–80.
Article CAS PubMed Google Scholar
Huang C-Y, Kuo W-W, Lo J-F, Ho T-J, Pai P-Y, Chiang S-F, et al. Doxorubicin attenuates CHIP-guarded HSF1 nuclear translocation and protein stability to trigger IGF-IIR-dependent cardiomyocyte death. Cell Death Dis. 2016;7:e2455.
Article PubMed PubMed Central Google Scholar
Esser C, Scheffner M, Höhfeld J. The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J Biol Chem. 2005;280:27443–8.
Article CAS PubMed Google Scholar
Liu S-P, Shibu MA, Tsai F-J, Hsu Y-M, Tsai C-H, Chung J-G, et al. Tetramethylpyrazine reverses high-glucose induced hypoxic effects by negatively regulating HIF-1α induced BNIP3 expression to ameliorate H9c2 cardiomyoblast apoptosis. Nutr Metab (Lond). 2020;17:12.
Article CAS PubMed Google Scholar
Liu S-C, Tsai C-H, Wu T-Y, Tsai C-H, Tsai F-J, Chung J-G, et al. Soya-cerebroside reduces IL-1β-induced MMP-1 production in chondrocytes and inhibits cartilage degradation: implications for the treatment of osteoarthritis. Food Agric Immunol. 2019;30:620–32.
Yang C-K, Feng C-C, Lo J-F, Chen J-W, Padma VV, Lai C-H, et al. C-terminus of Hsc70-interacting protein (CHIP) enhances stemness properties of human Wharton’s jelly mesenchymal stem cell. Biotech Histochem. 2018;93:632–9.
Comments (0)