Chaperone-assisted E3 ligase-engineered mesenchymal stem cells target hyperglycemia-induced p53 for ubiquitination and proteasomal degradation ameliorates self-renewal

Stolzing A, Sellers D, Llewelyn O, Scutt A. Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs. 2010;191:453–65.

Article  CAS  PubMed  Google Scholar 

Stolzing A, Bauer E, Scutt A. Suspension cultures of bone-marrow-derived mesenchymal stem cells: effects of donor age and glucose level. Stem Cells Dev. 2012;21:2718–23.

Article  CAS  PubMed  Google Scholar 

Salem HK, Thiemermann C. Mesenchymal stromal cells: current Understanding and clinical status. Stem Cells. 2010;28:585–96.

Article  CAS  PubMed  Google Scholar 

He S, Nakada D, Morrison SJ. Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol. 2009;25:377–406.

Article  CAS  PubMed  Google Scholar 

Christ B, Stock P. Mesenchymal stem cell-derived hepatocytes for functional liver replacement. Front Immunol. 2012;3:168.

Article  PubMed  PubMed Central  Google Scholar 

Chou S-H, Lin S-Z, Kuo W-W, Pai P, Lin J-Y, Lai C-H, et al. Mesenchymal stem cell insights: prospects in cardiovascular therapy. Cell Transpl. 2014;23:513–29.

Article  Google Scholar 

Keats E, Khan ZA. Unique responses of stem cell-derived vascular endothelial and mesenchymal cells to high levels of glucose. PLoS ONE. 2012;7:e38752.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phadnis SM, Ghaskadbi SM, Hardikar AA, Bhonde RR. Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment. Rev Diabet Stud. 2009;6:260–70.

Article  PubMed  Google Scholar 

Teixeira FG, Panchalingam KM, Anjo SI, Manadas B, Pereira R, Sousa N, et al. Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of wharton jelly mesenchymal stem cell secretome? Stem Cell Res Ther. 2015;6:133.

Article  PubMed  PubMed Central  Google Scholar 

Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T. Umbilical cord as prospective source for mesenchymal stem Cell-Based therapy. Stem Cells Int. 2016;2016:6901286.

Article  PubMed  PubMed Central  Google Scholar 

Vadalà G, Russo F, Ambrosio L, Loppini M, Denaro V. Stem cells sources for intervertebral disc regeneration. World J Stem Cells. 2016;8:185–201.

Article  PubMed  PubMed Central  Google Scholar 

Musiał-Wysocka A, Kot M, Sułkowski M, Badyra B, Majka M. Molecular and functional verification of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) pluripotency. Int J Mol Sci. 2019;20.

Witkowska-Zimny M, Wrobel E. Perinatal sources of mesenchymal stem cells: Wharton’s jelly, Amnion and chorion. Cell Mol Biol Lett. 2011;16:493–514.

Article  PubMed  PubMed Central  Google Scholar 

Kim D-W, Staples M, Shinozuka K, Pantcheva P, Kang S-D, Borlongan CV. Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci. 2013;14:11692–712.

Article  PubMed  PubMed Central  Google Scholar 

Cutler AJ, Limbani V, Girdlestone J, Navarrete CV. Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. J Immunol. 2010;185:6617–23.

Article  CAS  PubMed  Google Scholar 

Naito AT, Okada S, Minamino T, Iwanaga K, Liu M-L, Sumida T, et al. Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury. Circ Res. 2010;106:1692–702.

Article  CAS  PubMed  Google Scholar 

Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, et al. p53 regulates cell cycle and MicroRNAs to promote differentiation of human embryonic stem cells. PLoS Biol. 2012;10:e1001268.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Y, Lee S, Bobadilla S, Duan SZ, Liu X. High glucose-induced p53 phosphorylation contributes to impairment of endothelial antioxidant system. Biochim Biophys Acta Mol Basis Dis. 2017;1863:2355–62.

Article  CAS  PubMed  Google Scholar 

Meletis K, Wirta V, Hede S-M, Nistér M, Lundeberg J, Frisén J. p53 suppresses the self-renewal of adult neural stem cells. Development. 2006;133:363–9.

Article  CAS  PubMed  Google Scholar 

Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, et al. Protein damage, repair and proteolysis. Mol Aspects Med. 2014;35:1–71.

Article  CAS  PubMed  Google Scholar 

Wang J, Han F, Lee S-W, Wu J, Chan C-H, Zhang X, et al. E3-ligase Skp2 regulates β-catenin expression and maintains hematopoietic stem cell homing. Biochem Biophys Res Commun. 2014;445:566–71.

Article  CAS  PubMed  Google Scholar 

Shu L, Zhang H, Boyce BF, Xing L. Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration. J Bone Min Res. 2013;28:1925–35.

Article  CAS  Google Scholar 

Wang D, Bu F, Zhang W. The role of ubiquitination in regulating embryonic stem cell maintenance and Cancer development. Int J Mol Sci. 2019;20.

Lamb JR, Tugendreich S, Hieter P. Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci. 1995;20:257–9.

Article  CAS  PubMed  Google Scholar 

Ye Z, Needham PG, Estabrooks SK, Whitaker SK, Garcia BL, Misra S, et al. Symmetry breaking during homodimeric assembly activates an E3 ubiquitin ligase. Sci Rep. 2017;7:1789.

Article  PubMed  PubMed Central  Google Scholar 

VanPelt J, Page RC. Unraveling the CHIP:Hsp70 complex as an information processor for protein quality control. Biochim Biophys Acta Proteins Proteom. 2017;1865:133–41.

Article  CAS  PubMed  Google Scholar 

Ali A, Kuo W-W, Kuo C-H, Lo J-F, Chen MYC, Daddam JR, et al. E3 ligase activity of carboxyl terminus of Hsc70 interacting protein (CHIP) in Wharton’s jelly derived mesenchymal stem cells improves their persistence under hyperglycemic stress and promotes the prophylactic effects against diabetic cardiac damages. Bioeng Transl Med. 2021;6:e10234.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali A, Shibu MA, Kuo C-H, Lo J-F, Chen R-J, Day CH, et al. CHIP-overexpressing Wharton’s jelly-derived mesenchymal stem cells attenuate hyperglycemia-induced oxidative stress-mediated kidney injuries in diabetic rats. Free Radic Biol Med. 2021;173:70–80.

Article  CAS  PubMed  Google Scholar 

Huang C-Y, Kuo W-W, Lo J-F, Ho T-J, Pai P-Y, Chiang S-F, et al. Doxorubicin attenuates CHIP-guarded HSF1 nuclear translocation and protein stability to trigger IGF-IIR-dependent cardiomyocyte death. Cell Death Dis. 2016;7:e2455.

Article  PubMed  PubMed Central  Google Scholar 

Esser C, Scheffner M, Höhfeld J. The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J Biol Chem. 2005;280:27443–8.

Article  CAS  PubMed  Google Scholar 

Liu S-P, Shibu MA, Tsai F-J, Hsu Y-M, Tsai C-H, Chung J-G, et al. Tetramethylpyrazine reverses high-glucose induced hypoxic effects by negatively regulating HIF-1α induced BNIP3 expression to ameliorate H9c2 cardiomyoblast apoptosis. Nutr Metab (Lond). 2020;17:12.

Article  CAS  PubMed  Google Scholar 

Liu S-C, Tsai C-H, Wu T-Y, Tsai C-H, Tsai F-J, Chung J-G, et al. Soya-cerebroside reduces IL-1β-induced MMP-1 production in chondrocytes and inhibits cartilage degradation: implications for the treatment of osteoarthritis. Food Agric Immunol. 2019;30:620–32.

Article  CAS  Google Scholar 

Yang C-K, Feng C-C, Lo J-F, Chen J-W, Padma VV, Lai C-H, et al. C-terminus of Hsc70-interacting protein (CHIP) enhances stemness properties of human Wharton’s jelly mesenchymal stem cell. Biotech Histochem. 2018;93:632–9.

Comments (0)

No login
gif