Quercetin ameliorates chronic restraint stress- and LPS-induced anxiety-like behaviors by modulating neuroinflammation in the lateral hypothalamus

Agrawal K, Chakraborty P, Dewanjee S, Arfin S, Das SS, Dey A, Moustafa M, Mishra PC, Jafari SM, Jha NK et al (2023) Neuropharmacological interventions of Quercetin and its derivatives in neurological and psychological disorders. Neurosci Biobehav Rev 144:104955. https://doi.org/10.1016/j.neubiorev.2022.104955

Article  CAS  PubMed  Google Scholar 

Ahmadi S, Mohammadi Talvar S, Masoudi K, Zobeiri M (2023) Repeated use of morphine induces anxiety by affecting a Proinflammatory cytokine signaling pathway in the prefrontal cortex in rats. Mol Neurobiol 60:1425–1439. https://doi.org/10.1007/s12035-022-03144-3

Article  CAS  PubMed  Google Scholar 

Avery SN, Clauss JA, Blackford JU (2016) The human BNST: functional role in anxiety and addiction. Neuropsychopharmacology 41:126–141. https://doi.org/10.1038/npp.2015.185

Article  CAS  PubMed  Google Scholar 

Barretto-de-Souza L, Benini R, Reis-Silva LL, Crestani CC (2022) Role of CRF(1) and CRF(2) receptors in the lateral hypothalamus in cardiovascular and anxiogenic responses evoked by restraint stress in rats: evaluation of acute and chronic exposure. Neuropharmacology 212:109061. https://doi.org/10.1016/j.neuropharm

Article  CAS  PubMed  Google Scholar 

Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC (2016) Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 594:6443–6462. https://doi.org/10.1113/JP271946

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ch’ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ (2018) The intersection of stress and reward: BNST modulation of aversive and appetitive States. Prog Neuropsychopharmacol Biol Psychiatry 87:108–125. https://doi.org/10.1016/j.pnpbp.2018.01.005

Article  PubMed  Google Scholar 

Chen F, Sun J, Chen C, Zhang Y, Zou L, Zhang Z, Chen M, Wu H, Tian W, Liu Y et al (2022) Quercetin mitigates Methamphetamine-Induced Anxiety-Like behavior through ameliorating mitochondrial dysfunction and neuroinflammation. Front Mol Neurosci 15:829886. https://doi.org/10.3389/fnmol.2022.829886

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chrousos GP (2000) The role of stress and the hypothalamic-pituitary-adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. Int J Obes Relat Metab Disord 24(Suppl 2):50–55. https://doi.org/10.1038/sj.ijo.0801278

Article  Google Scholar 

Collaborators C-MD (2021) Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 398:1700–1712. https://doi.org/10.1016/S0140-6736(21)02143-7

Article  Google Scholar 

Costello H, Gould RL, Abrol E, Howard R (2019) Systematic review and meta-analysis of the association between peripheral inflammatory cytokines and generalised anxiety disorder. BMJ Open 9:e027925. https://doi.org/10.1136/bmjopen-2018-027925

Article  PubMed  PubMed Central  Google Scholar 

Esmaeili MH, Bahari B, Salari AA (2018) ATP-sensitive potassium-channel inhibitor Glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer’s disease. Brain Res Bull 137:265–276. https://doi.org/10.1016/j.brainresbull.2018.01.001

Article  CAS  PubMed  Google Scholar 

Fan KQ, Li YY, Wang HL, Mao XT, Guo JX, Wang F, Huang LJ, Li YN, Ma XY, Gao ZJ et al (2019) Stress-Induced metabolic disorder in peripheral CD4(+) T cells leads to Anxiety-like behavior. Cell 179:864–879e819. https://doi.org/10.1016/j.cell.2019.10.001

Article  CAS  PubMed  Google Scholar 

Foley P, Kirschbaum C (2010) Human hypothalamus-pituitary-adrenal axis responses to acute psychosocial stress in laboratory settings. Neurosci Biobehav Rev 35:91–96. https://doi.org/10.1016/j.neubiorev.2010.01.010

Article  CAS  PubMed  Google Scholar 

Gomes-de-Souza L, Costa-Ferreira W, Mendonca MM, Xavier CH, Crestani CC (2021) Lateral hypothalamus involvement in control of stress response by bed nucleus of the stria terminalis endocannabinoid neurotransmission in male rats. Sci Rep 11:16133. https://doi.org/10.1038/s41598-021-95401-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grewal AK, Singh TG, Sharma D, Sharma V, Singh M, Rahman MH, Najda A, Walasek-Janusz M, Kamel M, Albadrani GM et al (2021) Mechanistic insights and perspectives involved in neuroprotective action of Quercetin. Biomed Pharmacother 140:111729. https://doi.org/10.1016/j.biopha.2021.111729

Article  CAS  PubMed  Google Scholar 

Guo B, Zhang M, Hao W, Wang Y, Zhang T, Liu C (2023) Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl Psychiatry 13:5. https://doi.org/10.1038/s41398-022-02297-y

Article  PubMed  PubMed Central  Google Scholar 

Heo HJ, Lee CY (2004) Protective effects of Quercetin and vitamin C against oxidative stress-induced neurodegeneration. J Agric Food Chem 52:7514–7517. https://doi.org/10.1021/jf049243r

Article  CAS  PubMed  Google Scholar 

Hinwood M, Tynan RJ, Charnley JL, Beynon SB, Day TA, Walker FR (2013) Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of Minocycline. Cereb Cortex 23:1784–1797. https://doi.org/10.1093/cercor/bhs151

Article  PubMed  Google Scholar 

Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation 12:114. https://doi.org/10.1186/s12974-015-0332-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou Y, Aboukhatwa MA, Lei DL, Manaye K, Khan I, Luo Y (2010) Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice. Neuropharmacology 58:911–920. https://doi.org/10.1016/j.neuropharm.2009.11.002

Article  CAS  PubMed  Google Scholar 

Inagaki TK, Muscatell KA, Irwin MR, Cole SW, Eisenberger NI (2012) Inflammation selectively enhances amygdala activity to socially threatening images. NeuroImage 59:3222–3226. https://doi.org/10.1016/j.neuroimage.2011.10.090

Article  PubMed  Google Scholar 

Jakaria M, Haque ME, Cho DY, Azam S, Kim IS, Choi DK (2019) Molecular insights into NR4A2(Nurr1): an emerging target for neuroprotective therapy against neuroinflammation and neuronal cell death. Mol Neurobiol 56:5799–5814. https://doi.org/10.1007/s12035-019-1487-4

Article  CAS  PubMed  Google Scholar 

Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, Zhou P, Ong SK, Wright MA, Zweifel L et al (2018) Anxiety cells in a Hippocampal-Hypothalamic circuit. Neuron 97:670–683e676. https://doi.org/10.1016/j.neuron.2018.01.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim KS, Han PL (2006) Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters. J Neurosci Res 83:497–507. https://doi.org/10.1002/jnr.20754

Article  CAS  PubMed  Google Scholar 

Kim SY, Adhikari A, Lee SY, Marshel JH, Kim CK, Mallory CS, Lo M, Pak S, Mattis J, Lim BK et al (2013) Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496:219–223. https://doi.org/10.1038/nature12018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim J, Sullivan O, Lee K, Jao J, Tamayo J, Madany AM, Wong B, Ashwood P, Ciernia AV (2024) Repeated LPS induces training and tolerance of microglial responses across brain regions. J Neuroinflammation 21:233. https://doi.org/10.1186/s12974-024-03198-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kosari-Nasab M, Shokouhi G, Ghorbanihaghjo A, Mesgari-Abbasi M, Salari AA (2019) Quercetin mitigates anxiety-like behavior and normalizes hypothalamus-pituitary-adrenal axis function in a mouse model of mild traumatic brain injury. Behav Pharmacol 30:282–289. https://doi.org/10.1097/FBP.0000000000000480

Article  CAS  PubMed 

Comments (0)

No login
gif