The evolution of N, N-Dimethyltryptamine: from metabolic pathways to brain connectivity

Acosta-Urquidi J (2015) QEEG studies of the acute effects of the visionary tryptamine DMT. Cosmos Hist J Nat Soc Philos 11(2):115–129

Google Scholar 

Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36(4–5):589–599. https://doi.org/10.1016/s0028-3908(97)00051-8

Article  PubMed  CAS  Google Scholar 

Aghajanian GK, Marek GJ (1999) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res 825(1–2):161–171. https://doi.org/10.1016/S0006-8993(99)01224-X

Article  PubMed  CAS  Google Scholar 

Aghajanian GK, Foote WE, Sheard MH (1970) Action of psychotogenic drugs on single midbrain raphe neurons. J Pharmacol Exp Ther 171(2):178–187

Article  PubMed  CAS  Google Scholar 

Alamia A, Timmermann C, Nutt DJ, VanRullen R, Carhart-Harris RL (2020) DMT Alters Cortical Travelling Waves. elife 9:e59784. https://doi.org/10.7554/eLife.59784

Article  PubMed  PubMed Central  CAS  Google Scholar 

Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL (2010) Functional-Anatomic Fractionation of the Brain’s Default Network. Neuron 65(4):550–562. https://doi.org/10.1016/j.neuron.2010.02.005

Article  PubMed  PubMed Central  CAS  Google Scholar 

Araneda R, Andrade R (1991) 5-Hydroxytryptamine 2 And 5-Hydroxytryptamine 1A Receptors Mediate Opposing Responses On Membrane Excitability In Rat Association Cortex. Neuroscience 40(2):399–412. https://doi.org/10.1016/0306-4522(91)90128-B

Article  PubMed  CAS  Google Scholar 

Barker SA (2018) N, N-Dimethyltryptamine (DMT), an Endogenous Hallucinogen: Past, Present, and Future Research to Determine Its Role and Function. Front Neurosci 12:536. https://doi.org/10.3389/fnins.2018.00536

Article  PubMed  PubMed Central  Google Scholar 

Barker SA, Monti JA, Christian ST (1980) Metabolism of the hallucinogen N, N-dimethyltryptamine in rat brain homogenates. Biochem Pharmacol 29(7):1049–1057. https://doi.org/10.1016/0006-2952(80)90169-0

Article  PubMed  CAS  Google Scholar 

Barker SA, Monti JA, Christian ST (1981) N, N-Dimethyltryptamine: An Endogenous Hallucinogen. Int Rev Neurobiol 22:83–110. https://doi.org/10.1016/s0074-7742(08)60291-3

Article  PubMed  CAS  Google Scholar 

Barker SA, Beaton JM, Christian ST, Monti JA, Morris PE (1982) Comparison Of The Brain Levels Of N, N- Dimethyltryptamine And a, a, β, β-Tetradeutero- N N-Dimethyltryptamine following Intraperitoneal Injection. Biochem Pharmacol 31(15):2513–2516

Article  PubMed  CAS  Google Scholar 

Barker SA, Beaton JM, Christian ST, Monti JA, Morris PE (1984) In vivo metabolism of alpha, alpha, beta, beta-tetradeutero-N N-Dimethyltryptamine in Rodent Brain. Biochem Pharmacol 33(9):1395–1400. https://doi.org/10.1016/0006-2952(84)90404-0

Article  PubMed  CAS  Google Scholar 

Barker SA, McIlhenny EH, Strassman R (2012) A critical review of reports of endogenous psychedelic N, N-dimethyltryptamines in humans: 1955–2010. Drug Test Anal 4(7–8):617–635. https://doi.org/10.1002/dta.422

Article  PubMed  CAS  Google Scholar 

Barker SA, Borjigin J, Lomnicka I, Strassman R (2013) LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate. Biomed Chromatogr 27(12):1690–1700. https://doi.org/10.1002/bmc.2981

Article  PubMed  CAS  Google Scholar 

Başar E (2013) Brain oscillations in neuropsychiatric disease. Dialogues Clin Neurosci 15(3):291–300. https://doi.org/10.31887/DCNS.2013.15.3/ebasar

Article  PubMed  PubMed Central  Google Scholar 

Başar E, Başar-Eroğlu C, Güntekin B, Yener GG (2013) Brain’s alpha, beta, gamma, delta, and theta oscillations in neuropsychiatric diseases: Proposal for biomarker strategies. Suppl Clin Neurophysiol 62:19–54. https://doi.org/10.1016/b978-0-7020-5307-8.00002-8

Article  PubMed  Google Scholar 

Beaton JM, Morris PE (1984) Ontogeny of N, N-Dimethyltryptamine and related indolealkylamine levels in neonatal rats. Mech Ageing Dev 25(3):343–347. https://doi.org/10.1016/0047-6374(84)90007-1

Article  PubMed  CAS  Google Scholar 

Berry MD, Gainetdinov RR, Hoener MC, Shahid M (2017) Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 180:161–180. https://doi.org/10.1016/j.pharmthera.2017.07.002

Article  PubMed  CAS  Google Scholar 

Bhattacharyya S, Puri S, Miledi R, Panicker MM (2002) Internalization and recycling of 5-HT 2A receptors activated by serotonin and protein kinase C-mediated mechanisms. Proc Natl Acad Sci USA 99(22):14470–14475. https://doi.org/10.1073/pnas.212517999

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bhikharidas B, Mann LRB, Mcleod WR (1975) Indolamine N -methyltransferase activity in human tissues. J Neurochem 24(1):203–205. https://doi.org/10.1111/j.1471-4159.1975.tb07653.x

Article  PubMed  CAS  Google Scholar 

Blough BE, Landavazo A, Decker AM, Partilla JS, Baumann MH, Rothman RB (2014) Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes. Psychopharmacology 231(21):4135–4144. https://doi.org/10.1007/s00213-014-3557-7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Blue ME, Yagaloff KA, Mamounas LA, Hartig PR, Molliver ME (1988) Correspondence between 5-HT2 receptors and serotonergic axons in rat neocortex. Brain Res 453(1):315–328. https://doi.org/10.1016/0006-8993(88)90172-2

Article  PubMed  CAS  Google Scholar 

Borbély E, Varga V, Szögi T, Schuster I, Bozsó Z, Penke B, Fülöp L (2022) Impact of Two Neuronal Sigma-1 Receptor Modulators, PRE084 and DMT, on Neurogenesis and Neuroinflammation in an Aβ1–42-Injected, Wild-Type Mouse Model of AD. Int J Mol Sci 23(5):2514. https://doi.org/10.3390/ijms23052514

Article  PubMed  PubMed Central  CAS  Google Scholar 

Boyson SJ, Alexander A (1990) Net production of cerebrospinal fluid is decreased by SCH-23390. Ann Neurol 27(6):631–635. https://doi.org/10.1002/ana.410270608

Article  PubMed  CAS  Google Scholar 

Braboszcz C, Cahn BR, Levy J, Fernandez M, Delorme A (2017) Increased Gamma Brainwave Amplitude Compared to Control in Three Different Meditation Traditions. PLoS ONE 12(1):e0170647. https://doi.org/10.1371/journal.pone.0170647

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brito-da-Costa AM, Dias-da-Silva D, Gomes NGM, Dinis-Oliveira RJ, Madureira-Carvalho Á (2020) Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N, N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact. Pharmaceuticals 13(11):334. https://doi.org/10.3390/ph13110334

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK (2001) Amphetamine, 3,4-Methylenedioxymethamphetamine, Lysergic Acid Diethylamide, and Metabolites of the Catecholamine Neurotransmitters Are Agonists of a Rat Trace Amine Receptor. Mol Pharmacol 60(6):1181–1188. https://doi.org/10.1124/mol.60.6.1181

Article  PubMed  CAS  Google Scholar 

Cameron LP, Olson DE (2018) Dark Classics in Chemical Neuroscience: N, N -Dimethyltryptamine (DMT). ACS Chem Neurosci 9(10):2344–2357. https://doi.org/10

Comments (0)

No login
gif