Measurement Error and Methodologic Issues in Analyses of the Proportion of Variance Explained in Cognition

Bejanin, A., Schonhaut, D. R., La Joie, R., Kramer, J. H., Baker, S. L., Sosa, N., et al. (2017). Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain: A Journal of Neurology, 140(12), 3286–3300 https://doi.org/10.1093/brain/awx243

Borsboom, D. (2008). Latent variable theory. Measurement: Interdisciplinary Research and Perspectives, 6(1–2), 25–53 https://doi.org/10.1080/15366360802035497

Boyle, P. A., Wang, T., Yu, L., Wilson, R. S., Dawe, R., Arfanakis, K., et al. (2021). To what degree is late life cognitive decline driven by age-related neuropathologies? Brain: A Journal of Neurology, 144(7), 2166–2175. https://doi.org/10.1093/brain/awab092

Bürkner, P.-C. (2017). brms: An R package for bayesian multilevel models using stan. Journal of Statistical Software, 80, 1–28. https://doi.org/10.18637/jss.v080.i01

Chan, K. S., Gross, A. L., Pezzin, L. E., Brandt, J., & Kasper, J. D. (2015). Harmonizing measures of cognitive performance across international surveys of aging using item response theory. Journal of Aging and Health, 27(8), 1392–1414. https://doi.org/10.1177/0898264315583054

Article  PubMed  PubMed Central  Google Scholar 

Charles, E. P. (2005). The correction for attenuation due to measurement error: Clarifying concepts and creating confidence sets. Psychological Methods, 10(2), 206.

Article  PubMed  Google Scholar 

Choi, S.-E., Mukherjee, S., Gibbons, L. E., Sanders, R. E., Jones, R. N., Tommet, D., et al. (2020). Development and validation of language and visuospatial composite scores in ADNI. Alzheimer’s & Dementia : Translational Research & Clinical Interventions, 6(1). https://doi.org/10.1002/trc2.12072

Chou, Y.-Y., Leporé, N., Avedissian, C., Madsen, S. K., Parikshak, N., Hua, X., et al. (2009). Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer’s disease, mild cognitive impairment and elderly controls. NeuroImage, 46(2), 394–410. https://doi.org/10.1016/j.neuroimage.2009.02.015

Article  PubMed  Google Scholar 

Crane, P. K., Carle, A., Gibbons, L. E., Insel, P., Mackin, R. S., Gross, A., et al. (2012). Development and assessment of a composite score for memory in the Alzheimer’s disease neuroimaging initiative (ADNI). Brain Imaging and Behavior, 6(4), 502–516. https://doi.org/10.1007/s11682-012-9186-z

Article  PubMed  PubMed Central  Google Scholar 

Crane, P. K., Choi, S.-E., Lee, M., Scollard, P., Sanders, R. E., Klinedinst, B., et al. (2023). Measurement precision across cognitive domains in the Alzheimer’s disease neuroimaging initiative (ADNI) data set. Neuropsychology, 37(4), 373–382. https://doi.org/10.1037/neu0000901

Article  PubMed  PubMed Central  Google Scholar 

Fox, J.-P., & Glas, C. A. W. (2003). Bayesian modeling of measurement error in predictor variables using item response theory. Psychometrika, 68(2), 169–191. https://doi.org/10.1007/BF02294796

Article  Google Scholar 

Fuller, W. A. (2009). Measurement error models. John Wiley & Sons. https://books.google.com/books?hl=en&lr=&id=Nalc0DkAJRYC&oi=fnd&pg=PR3&dq=Fuller,+W.+A.+1987.+Measurement+Error+Models.+New+York:+Wiley.&ots=JQA1VuFrc9&sig=C4JNQr03aEJ-xB5gYSCgC2i2xTg. Accessed 8 August 2024

Gavett, B. E., Ilango, S. D., Koscik, R., Ma, Y., Helfand, B., Eng, C. W., et al. (2023). Harmonization of cognitive screening tools for dementia across diverse samples: A simulation study. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 15(2), e12438. https://doi.org/10.1002/dad2.12438

Article  Google Scholar 

Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian regression models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100

Article  Google Scholar 

Gianattasio, K. Z., Bennett, E. E., Wei, J., Mehrotra, M. L., Mosley, T., Gottesman, R. F., et al. (2021). Generalizability of findings from a clinical sample to a community-based sample: A comparison of ADNI and ARIC. Alzheimer’s & Dementia, 17(8), 1265–1276. https://doi.org/10.1002/alz.12293

Article  CAS  Google Scholar 

Gibbons, L. E., Carle, A. C., Mackin, R. S., Harvey, D., Mukherjee, S., Insel, P., et al. (2012). A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging and Behavior, 6(4), 517–527. https://doi.org/10.1007/s11682-012-9176-1

Article  PubMed  PubMed Central  Google Scholar 

Gross, A. L., Li, C., Briceño, E. M., Rentería, M. A., Jones, R. N., Langa, K. M., et al. (2023). Harmonisation of later-life cognitive function across national contexts: Results from the Harmonized Cognitive Assessment Protocols. The Lancet Healthy Longevity, 4(10), e573–e583. https://doi.org/10.1016/S2666-7568(23)00170-8

Article  PubMed  PubMed Central  Google Scholar 

Gross, A. L., Power, M. C., Albert, M. S., Deal, J. A., Gottesman, R. F., Griswold, M., et al. (2015). Application of latent variable methods to the study of cognitive decline when tests change over time. Epidemiology (Cambridge, Mass.), 26(6), 878–887. https://doi.org/10.1097/EDE.0000000000000379

Hanseeuw, B. J., Jacobs, H. I. L., Schultz, A. P., Buckley, R. F., Farrell, M. E., Guehl, N. J., et al. (2023). Association of pathologic and volumetric biomarker changes with cognitive decline in clinically normal adults. Neurology, 101(24), e2533–e2544. https://doi.org/10.1212/WNL.0000000000207962

Article  CAS  PubMed  Google Scholar 

Hedderich, D. M., Drost, R., Goldhardt, O., Ortner, M., Müller-Sarnowski, F., Diehl-Schmid, J., et al. (2020). Regional cerebral associations between psychometric tests and imaging biomarkers in Alzheimer’s disease. Frontiers in Psychiatry, 11. https://www.frontiersin.org/articles/https://doi.org/10.3389/fpsyt.2020.00793. Accessed 12 January 2024

Innes, G. K., Bhondoekhan, F., Lau, B., Gross, A. L., Ng, D. K., & Abraham, A. G. (2021). The measurement error elephant in the room: Challenges and solutions to measurement error in epidemiology. Epidemiologic Reviews, 43(1), 94–105. https://doi.org/10.1093/epirev/mxab011

Article  PubMed Central  Google Scholar 

Jack, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology, 9(1), 119–128. https://doi.org/10.1016/S1474-4422(09)70299-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalkbrenner, M. T. (2023). Alpha, omega, and H internal consistency reliability estimates: Reviewing these options and when to use them. Counseling Outcome Research and Evaluation, 14(1), 77–88. https://doi.org/10.1080/21501378.2021.1940118

Article  Google Scholar 

Martersteck, A., Sridhar, J., Coventry, C., Weintraub, S., Mesulam, M.-M., & Rogalski, E. (2021). Relationships among tau burden, atrophy, age, and naming in the aphasic variant of Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 17(11), 1788–1797. https://doi.org/10.1002/alz.12445

Article  CAS  Google Scholar 

Matsuura, K. (2023). Bayesian statistical modeling with Stan, R, and Python. Springer Nature.

McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944. https://doi.org/10.1212/wnl.34.7.939

Article  CAS  PubMed  Google Scholar 

Mislevy, R. J. (1988). Randomization-based inferences about latent variables from complex samples. ETS Research Report Series, 1988(2), i–71. https://doi.org/10.1002/j.2330-8516.1988.tb00310.x

Article  Google Scholar 

Muff, S., Riebler, A., Held, L., Rue, H., & Saner, P. (2015). Bayesian analysis of measurement error models using integrated nested laplace approximations. Journal of the Royal Statistical Society Series c: Applied Statistics, 64(2), 231–252. https://doi.org/10.1111/rssc.12069

Article  Google Scholar 

Mukherjee, S., Link to external site, this link will open in a new window, Choi, S.-E., Lee, M. L., Scollard, P., Trittschuh, E. H., et al. (2023). Cognitive domain harmonization and cocalibration in studies of older adults. Neuropsychology, 37(4), 409–423. https://doi.org/10.1037/neu0000835

Ng, T. K. S., Coughlan, C., Heyn, P. C., Tagawa, A., Carollo, J. J., Kua, E. H., & Mahendran, R. (2021). Increased plasma brain-derived neurotrophic factor (BDNF) as a potential biomarker for and compensatory mechanism in mild cognitive impairment: a case-control study. Aging (Albany NY), 13(19), 22666–22689. https://doi.org/10.18632/aging.203598

Padilla, M. A., & Veprinsky, A. (2012). Correlation attenuation due to measurement error: A new approach using the bootstrap procedure. Educational and Psychological Measurement, 72(5), 827–846. https://doi.org/10.1177/0013164412443963

Article  Google Scholar 

Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303–308. https://doi.org/10.1001/archneur.56.3.303

Article  CAS  PubMed  Google Scholar 

Quintana, F. A., Iglesias, P. L., & Bolfarine, H. (2005). Bayesian identification of outliers and change-points in measurement error models. Advances in Complex Systems, 08(04), 433–449. https://doi.org/10.1142/S0219525905000567

Article  Google Scholar 

Reuter, M., Schmansky, N. J., Rosas, H. D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage, 61(4), 1402–1418. https://doi.org/10.1016/j.neuroimage.2012.02.084

Article  PubMed  Google Scholar 

Richardson, S., & Gilks, W. R. (1993). A Bayesian approach to measurement error problems in epidemiology using conditional independence models. American Journal of Epidemiology, 138(6), 430–442. https://doi.org/10.1093/oxfordjournals.aje.a116875

Article  CAS  PubMed  Google Scholar 

Scollard, P., Choi, S.-E., Lee, M. L., Mukherjee, S., Trittschuh, E. H., Sanders, R. E., et al. (2023). Ceiling effects and differential measurement precision across calibrated cognitive scores in the Framingham Study. Neuropsychology, 37(4), 383–397. https://doi.org/10.1037/neu0000828

Article  PubMed  PubMed Central  Google Scholar 

Spearman, C. (1904). The proof and measurement of association between two things. American Journal of Psychology, 15(1), 72–101.

Article  Google Scholar 

Štrumbelj, E., Bouchard-Côté, A., Corander, J., Gelman, A., Rue, H., Murray, L., et al. (2024). Past, present and future of software for Bayesian inference. Statistical Science, 39(1), 46–61. https://doi.org/10.1214/23-STS907

Article  Google Scholar 

Comments (0)

No login
gif