Bejanin, A., Schonhaut, D. R., La Joie, R., Kramer, J. H., Baker, S. L., Sosa, N., et al. (2017). Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain: A Journal of Neurology, 140(12), 3286–3300 https://doi.org/10.1093/brain/awx243
Borsboom, D. (2008). Latent variable theory. Measurement: Interdisciplinary Research and Perspectives, 6(1–2), 25–53 https://doi.org/10.1080/15366360802035497
Boyle, P. A., Wang, T., Yu, L., Wilson, R. S., Dawe, R., Arfanakis, K., et al. (2021). To what degree is late life cognitive decline driven by age-related neuropathologies? Brain: A Journal of Neurology, 144(7), 2166–2175. https://doi.org/10.1093/brain/awab092
Bürkner, P.-C. (2017). brms: An R package for bayesian multilevel models using stan. Journal of Statistical Software, 80, 1–28. https://doi.org/10.18637/jss.v080.i01
Chan, K. S., Gross, A. L., Pezzin, L. E., Brandt, J., & Kasper, J. D. (2015). Harmonizing measures of cognitive performance across international surveys of aging using item response theory. Journal of Aging and Health, 27(8), 1392–1414. https://doi.org/10.1177/0898264315583054
Article PubMed PubMed Central Google Scholar
Charles, E. P. (2005). The correction for attenuation due to measurement error: Clarifying concepts and creating confidence sets. Psychological Methods, 10(2), 206.
Choi, S.-E., Mukherjee, S., Gibbons, L. E., Sanders, R. E., Jones, R. N., Tommet, D., et al. (2020). Development and validation of language and visuospatial composite scores in ADNI. Alzheimer’s & Dementia : Translational Research & Clinical Interventions, 6(1). https://doi.org/10.1002/trc2.12072
Chou, Y.-Y., Leporé, N., Avedissian, C., Madsen, S. K., Parikshak, N., Hua, X., et al. (2009). Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer’s disease, mild cognitive impairment and elderly controls. NeuroImage, 46(2), 394–410. https://doi.org/10.1016/j.neuroimage.2009.02.015
Crane, P. K., Carle, A., Gibbons, L. E., Insel, P., Mackin, R. S., Gross, A., et al. (2012). Development and assessment of a composite score for memory in the Alzheimer’s disease neuroimaging initiative (ADNI). Brain Imaging and Behavior, 6(4), 502–516. https://doi.org/10.1007/s11682-012-9186-z
Article PubMed PubMed Central Google Scholar
Crane, P. K., Choi, S.-E., Lee, M., Scollard, P., Sanders, R. E., Klinedinst, B., et al. (2023). Measurement precision across cognitive domains in the Alzheimer’s disease neuroimaging initiative (ADNI) data set. Neuropsychology, 37(4), 373–382. https://doi.org/10.1037/neu0000901
Article PubMed PubMed Central Google Scholar
Fox, J.-P., & Glas, C. A. W. (2003). Bayesian modeling of measurement error in predictor variables using item response theory. Psychometrika, 68(2), 169–191. https://doi.org/10.1007/BF02294796
Fuller, W. A. (2009). Measurement error models. John Wiley & Sons. https://books.google.com/books?hl=en&lr=&id=Nalc0DkAJRYC&oi=fnd&pg=PR3&dq=Fuller,+W.+A.+1987.+Measurement+Error+Models.+New+York:+Wiley.&ots=JQA1VuFrc9&sig=C4JNQr03aEJ-xB5gYSCgC2i2xTg. Accessed 8 August 2024
Gavett, B. E., Ilango, S. D., Koscik, R., Ma, Y., Helfand, B., Eng, C. W., et al. (2023). Harmonization of cognitive screening tools for dementia across diverse samples: A simulation study. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 15(2), e12438. https://doi.org/10.1002/dad2.12438
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian regression models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100
Gianattasio, K. Z., Bennett, E. E., Wei, J., Mehrotra, M. L., Mosley, T., Gottesman, R. F., et al. (2021). Generalizability of findings from a clinical sample to a community-based sample: A comparison of ADNI and ARIC. Alzheimer’s & Dementia, 17(8), 1265–1276. https://doi.org/10.1002/alz.12293
Gibbons, L. E., Carle, A. C., Mackin, R. S., Harvey, D., Mukherjee, S., Insel, P., et al. (2012). A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging and Behavior, 6(4), 517–527. https://doi.org/10.1007/s11682-012-9176-1
Article PubMed PubMed Central Google Scholar
Gross, A. L., Li, C., Briceño, E. M., Rentería, M. A., Jones, R. N., Langa, K. M., et al. (2023). Harmonisation of later-life cognitive function across national contexts: Results from the Harmonized Cognitive Assessment Protocols. The Lancet Healthy Longevity, 4(10), e573–e583. https://doi.org/10.1016/S2666-7568(23)00170-8
Article PubMed PubMed Central Google Scholar
Gross, A. L., Power, M. C., Albert, M. S., Deal, J. A., Gottesman, R. F., Griswold, M., et al. (2015). Application of latent variable methods to the study of cognitive decline when tests change over time. Epidemiology (Cambridge, Mass.), 26(6), 878–887. https://doi.org/10.1097/EDE.0000000000000379
Hanseeuw, B. J., Jacobs, H. I. L., Schultz, A. P., Buckley, R. F., Farrell, M. E., Guehl, N. J., et al. (2023). Association of pathologic and volumetric biomarker changes with cognitive decline in clinically normal adults. Neurology, 101(24), e2533–e2544. https://doi.org/10.1212/WNL.0000000000207962
Article CAS PubMed Google Scholar
Hedderich, D. M., Drost, R., Goldhardt, O., Ortner, M., Müller-Sarnowski, F., Diehl-Schmid, J., et al. (2020). Regional cerebral associations between psychometric tests and imaging biomarkers in Alzheimer’s disease. Frontiers in Psychiatry, 11. https://www.frontiersin.org/articles/https://doi.org/10.3389/fpsyt.2020.00793. Accessed 12 January 2024
Innes, G. K., Bhondoekhan, F., Lau, B., Gross, A. L., Ng, D. K., & Abraham, A. G. (2021). The measurement error elephant in the room: Challenges and solutions to measurement error in epidemiology. Epidemiologic Reviews, 43(1), 94–105. https://doi.org/10.1093/epirev/mxab011
Article PubMed Central Google Scholar
Jack, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology, 9(1), 119–128. https://doi.org/10.1016/S1474-4422(09)70299-6
Article CAS PubMed PubMed Central Google Scholar
Kalkbrenner, M. T. (2023). Alpha, omega, and H internal consistency reliability estimates: Reviewing these options and when to use them. Counseling Outcome Research and Evaluation, 14(1), 77–88. https://doi.org/10.1080/21501378.2021.1940118
Martersteck, A., Sridhar, J., Coventry, C., Weintraub, S., Mesulam, M.-M., & Rogalski, E. (2021). Relationships among tau burden, atrophy, age, and naming in the aphasic variant of Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 17(11), 1788–1797. https://doi.org/10.1002/alz.12445
Matsuura, K. (2023). Bayesian statistical modeling with Stan, R, and Python. Springer Nature.
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944. https://doi.org/10.1212/wnl.34.7.939
Article CAS PubMed Google Scholar
Mislevy, R. J. (1988). Randomization-based inferences about latent variables from complex samples. ETS Research Report Series, 1988(2), i–71. https://doi.org/10.1002/j.2330-8516.1988.tb00310.x
Muff, S., Riebler, A., Held, L., Rue, H., & Saner, P. (2015). Bayesian analysis of measurement error models using integrated nested laplace approximations. Journal of the Royal Statistical Society Series c: Applied Statistics, 64(2), 231–252. https://doi.org/10.1111/rssc.12069
Mukherjee, S., Link to external site, this link will open in a new window, Choi, S.-E., Lee, M. L., Scollard, P., Trittschuh, E. H., et al. (2023). Cognitive domain harmonization and cocalibration in studies of older adults. Neuropsychology, 37(4), 409–423. https://doi.org/10.1037/neu0000835
Ng, T. K. S., Coughlan, C., Heyn, P. C., Tagawa, A., Carollo, J. J., Kua, E. H., & Mahendran, R. (2021). Increased plasma brain-derived neurotrophic factor (BDNF) as a potential biomarker for and compensatory mechanism in mild cognitive impairment: a case-control study. Aging (Albany NY), 13(19), 22666–22689. https://doi.org/10.18632/aging.203598
Padilla, M. A., & Veprinsky, A. (2012). Correlation attenuation due to measurement error: A new approach using the bootstrap procedure. Educational and Psychological Measurement, 72(5), 827–846. https://doi.org/10.1177/0013164412443963
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303–308. https://doi.org/10.1001/archneur.56.3.303
Article CAS PubMed Google Scholar
Quintana, F. A., Iglesias, P. L., & Bolfarine, H. (2005). Bayesian identification of outliers and change-points in measurement error models. Advances in Complex Systems, 08(04), 433–449. https://doi.org/10.1142/S0219525905000567
Reuter, M., Schmansky, N. J., Rosas, H. D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage, 61(4), 1402–1418. https://doi.org/10.1016/j.neuroimage.2012.02.084
Richardson, S., & Gilks, W. R. (1993). A Bayesian approach to measurement error problems in epidemiology using conditional independence models. American Journal of Epidemiology, 138(6), 430–442. https://doi.org/10.1093/oxfordjournals.aje.a116875
Article CAS PubMed Google Scholar
Scollard, P., Choi, S.-E., Lee, M. L., Mukherjee, S., Trittschuh, E. H., Sanders, R. E., et al. (2023). Ceiling effects and differential measurement precision across calibrated cognitive scores in the Framingham Study. Neuropsychology, 37(4), 383–397. https://doi.org/10.1037/neu0000828
Article PubMed PubMed Central Google Scholar
Spearman, C. (1904). The proof and measurement of association between two things. American Journal of Psychology, 15(1), 72–101.
Štrumbelj, E., Bouchard-Côté, A., Corander, J., Gelman, A., Rue, H., Murray, L., et al. (2024). Past, present and future of software for Bayesian inference. Statistical Science, 39(1), 46–61. https://doi.org/10.1214/23-STS907
Comments (0)