Revealing the Multivariate Associations Between Autistic Traits and Principal Functional Connectome

Achenbach, T. M., & Rescorla, L. A. (2001). Child Behavior Checklist for Ages 6–18 . https://doi.org/10.1037/t47452-000

Assaf, M., Jagannathan, K., Calhoun, V. D., Miller, L., Stevens, M. C., Sahl, R., O’Boyle, J. G., Schultz, R. T., & Pearlson, G. D. (2010). Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. NeuroImage, 53(1), 247–256. https://doi.org/10.1016/j.neuroimage.2010.05.067

Article  PubMed  Google Scholar 

Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41. https://doi.org/10.1016/j.media.2007.06.004

Article  CAS  PubMed  Google Scholar 

Biswal, B., ZerrinYetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine, 34(4), 537–541. https://doi.org/10.1002/mrm.1910340409

Article  CAS  PubMed  Google Scholar 

Bölte, S., Poustka, F., & Constantino, J. N. (2008). Assessing autistic traits: Cross-cultural validation of the social responsiveness scale (SRS). Autism Research, 1(6), 354–363. https://doi.org/10.1002/aur.49

Article  PubMed  Google Scholar 

Buch, A. M., Vértes, P. E., Seidlitz, J., Kim, S. H., Grosenick, L., & Liston, C. (2023). Molecular and network-level mechanisms explaining individual differences in autism spectrum disorder. Nature Neuroscience, 26, 650–663. https://doi.org/10.1038/s41593-023-01259-x

Cerliani, L., Mennes, M., Thomas, R. M., Di Martino, A., Thioux, M., & Keysers, C. (2015). Increased Functional Connectivity Between Subcortical and Cortical Resting-State Networks in Autism Spectrum Disorder. JAMA Psychiatry, 72(8), 767–777. https://doi.org/10.1001/jamapsychiatry.2015.0101

Article  PubMed  PubMed Central  Google Scholar 

Chien, H.-Y., Lin, H.-Y., Lai, M.-C., Gau, S.S.-F., & Tseng, W.-Y.I. (2015). Hyperconnectivity of the Right Posterior Temporo-parietal Junction Predicts Social Difficulties in Boys with Autism Spectrum Disorder. Autism Research, 8(4), 427–441. https://doi.org/10.1002/aur.1457

Article  PubMed  Google Scholar 

Constantino, J. N. (2013). Social responsiveness scale. In F. R. Volkmar (Ed.) Encyclopedia of autism spectrum disorders. Springer. https://doi.org/10.1007/978-1-4419-1698-3_296

Constantino, J., & Gruber, C. P. (2005). The social responsiveness scale (SRS) manual. Los Angeles: Western Psychological Services.

Google Scholar 

Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visualization of fMRI data. NMR in Biomedicine, 10(4–5), 171–178. https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5%3c171::AID-NBM453%3e3.0.CO;2-L

Article  CAS  PubMed  Google Scholar 

Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., Balsters, J. H., Baxter, L., Beggiato, A., Bernaerts, S., Blanken, L. M. E., Bookheimer, S. Y., Braden, B. B., Byrge, L., Castellanos, F. X., Dapretto, M., Delorme, R., Fair, D. A., Fishman, I., & Milham, M. P. (2017). Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific Data, 4(1), 1. https://doi.org/10.1038/sdata.2017.10

Article  Google Scholar 

Dichter, G. S. (2012). Functional magnetic resonance imaging of autism spectrum disorders. Dialogues in Clinical Neuroscience, 14(3), 319–351. https://doi.org/10.31887/DCNS.2012.14.3/gdichter

Article  PubMed  PubMed Central  Google Scholar 

Dickie, E. W., Anticevic, A., Smith, D. E., Coalson, T. S., Manogaran, M., Calarco, N., Viviano, J. D., Glasser, M. F., Van Essen, D. C., & Voineskos, A. N. (2019). Ciftify: A framework for surface-based analysis of legacy MR acquisitions. NeuroImage, 197, 818–826. https://doi.org/10.1016/j.neuroimage.2019.04.078

Article  PubMed  Google Scholar 

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: A robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 1. https://doi.org/10.1038/s41592-018-0235-4

Article  CAS  Google Scholar 

Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021

Article  PubMed  Google Scholar 

Fleming, S. M., & Dolan, R. J. (2012). The neural basis of metacognitive ability. Philosophical Transactions of the Royal Society b: Biological Sciences, 367(1594), 1338–1349. https://doi.org/10.1098/rstb.2011.0417

Article  Google Scholar 

Fortin, J.-P., Cullen, N., Sheline, Y. I., Taylor, W. D., Aselcioglu, I., Cook, P. A., Adams, P., Cooper, C., Fava, M., McGrath, P. J., McInnis, M., Phillips, M. L., Trivedi, M. H., Weissman, M. M., & Shinohara, R. T. (2018). Harmonization of cortical thickness measurements across scanners and sites. NeuroImage, 167, 104–120. https://doi.org/10.1016/j.neuroimage.2017.11.024

Article  PubMed  Google Scholar 

Gioia, G. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2015). Behavior Rating Inventory of Executive Function®, Second Edition (BRIEF®2, BRIEF2, BRIEF-2). https://doi.org/10.1037/t79467-000

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., & Jenkinson, M. (2013). The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127

Article  PubMed  Google Scholar 

Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. NeuroImage, 48(1), 63–72. https://doi.org/10.1016/j.neuroimage.2009.06.060

Article  PubMed  Google Scholar 

Hernandez, L. M., Rudie, J. D., Green, S. A., Bookheimer, S., & Dapretto, M. (2015). Neural Signatures of Autism Spectrum Disorders: Insights into Brain Network Dynamics. Neuropsychopharmacology, 40(1), 1. https://doi.org/10.1038/npp.2014.172

Article  Google Scholar 

Hodges, H., Fealko, C., & Soares, N. (2020). Autism spectrum disorder: Definition, epidemiology, causes, and clinical evaluation. Translational Pediatrics, 9(Suppl 1), S55–S65. https://doi.org/10.21037/tp.2019.09.09

Article  PubMed  PubMed Central  Google Scholar 

Hong, S.-J., Vos de Wael, R., Bethlehem, R. A. I., Lariviere, S., Paquola, C., Valk, S. L., Milham, M. P., Di Martino, A., Margulies, D. S., Smallwood, J., & Bernhardt, B. C. (2019). Atypical functional connectome hierarchy in autism. Nature Communications, 10(1), 1. https://doi.org/10.1038/s41467-019-08944-1

Article  CAS  Google Scholar 

Hotelling, H. (1992). Relations Between Two Sets of Variates. In S. Kotz & N. L. Johnson (Eds.), Breakthroughs in Statistics: Methodology and Distribution (pp. 162–190). Springer. https://doi.org/10.1007/978-1-4612-4380-9_14

Chapter  Google Scholar 

Hours, C., Recasens, C., & Baleyte, J.-M. (2022). ASD and ADHD Comorbidity: What Are We Talking About? Frontiers in Psychiatry, 13, 837424. https://doi.org/10.3389/fpsyt.2022.837424

Article  PubMed  PubMed Central  Google Scholar 

Jones, T. B., Bandettini, P. A., Kenworthy, L., Case, L. K., Milleville, S. C., Martin, A., & Birn, R. M. (2010). Sources of group differences in functional connectivity: An investigation applied to autism spectrum disorder. NeuroImage, 49(1), 401–414. https://doi.org/10.1016/j.neuroimage.2009.07.051

Article  PubMed  Google Scholar 

Kennedy, D. P., & Courchesne, E. (2008). The intrinsic functional organization of the brain is altered in autism. NeuroImage, 39(4), 1877–1885. https://doi.org/10.1016/j.neuroimage.2007.10.052

Article  PubMed  Google Scholar 

Klein, A., Ghosh, S. S., Bao, F. S., Giard, J., Häme, Y., Stavsky, E., Lee, N., Rossa, B., Reuter, M., Neto, E. C., & Keshavan, A. (2017). Mindboggling morphometry of human brains. PLOS Computational Biology, 13(2), e1005350. https://doi.org/10.1371/journal.pcbi.1005350

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lai, M.-C., Kassee, C., Besney, R., Bonato, S., Hull, L., Mandy, W., Szatmari, P., & Ameis, S. H. (2019). Prevalence of co-occurring mental health diagnoses in the autism population: A systematic review and meta-analysis. The Lancet Psychiatry, 6(10), 819–829. https://doi.org/10.1016/S2215-0366(19)30289-5

Article  PubMed  Google Scholar 

Langs, G., Golland, P., & Ghosh, S. S. (2015). Predicting Activation Across Individuals with Resting-State Functional Connectivity Based Multi-Atlas Label Fusion. In N. Navab, J. Hornegger, W. M. Wells, & A. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 (pp. 313–320). Springer International Publishing. https://doi.org/10.1007/978-3-319-24571-3_38

Chapter  Google Scholar 

Larivière, S., Paquola, C., Park, B., Royer, J., Wang, Y., Benkarim, O., Wael, R. V. de, Valk, S. L., Thomopoulos, S. I., Kirschner, M., Consortium, E., Lewis, L. B., Evans, A. C., Sisodiya, S. M., McDonald, C. R., Thompson, P. M., & Bernhardt, B. C. (2021). The ENIGMA Toolbox: Cross-disorder integration and multiscale neural contextualization of multisite neuroimaging datasets. Nat Methods, 18, 698–700. https://doi.org/10.1038/s41592-021-01186-4

Lau, W. K. W., Leung, M.-K., & Lau, B. W. M. (2019). Resting-state abnormalities in Autism Spectrum Disorders: A meta-analysis. Scientific Reports, 9(1), 1. https://doi.org/10.1038/s41598-019-40427-7

Article  CAS  Google Scholar 

Liloia, D., Cauda, F., Uddin, L. Q., Manuello, J., Mancuso, L., Keller, R., Nani, A., & Costa, T. (2022). Revealing the selectivity of neuroanatomical alteration in autism spectrum disorder via reverse inference. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 8, 1075. https://doi.org/10.1016/j.bpsc.2022.01.007

Article  PubMed 

Comments (0)

No login
gif