Achenbach, T. M., & Rescorla, L. A. (2001). Child Behavior Checklist for Ages 6–18 . https://doi.org/10.1037/t47452-000
Assaf, M., Jagannathan, K., Calhoun, V. D., Miller, L., Stevens, M. C., Sahl, R., O’Boyle, J. G., Schultz, R. T., & Pearlson, G. D. (2010). Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. NeuroImage, 53(1), 247–256. https://doi.org/10.1016/j.neuroimage.2010.05.067
Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41. https://doi.org/10.1016/j.media.2007.06.004
Article CAS PubMed Google Scholar
Biswal, B., ZerrinYetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine, 34(4), 537–541. https://doi.org/10.1002/mrm.1910340409
Article CAS PubMed Google Scholar
Bölte, S., Poustka, F., & Constantino, J. N. (2008). Assessing autistic traits: Cross-cultural validation of the social responsiveness scale (SRS). Autism Research, 1(6), 354–363. https://doi.org/10.1002/aur.49
Buch, A. M., Vértes, P. E., Seidlitz, J., Kim, S. H., Grosenick, L., & Liston, C. (2023). Molecular and network-level mechanisms explaining individual differences in autism spectrum disorder. Nature Neuroscience, 26, 650–663. https://doi.org/10.1038/s41593-023-01259-x
Cerliani, L., Mennes, M., Thomas, R. M., Di Martino, A., Thioux, M., & Keysers, C. (2015). Increased Functional Connectivity Between Subcortical and Cortical Resting-State Networks in Autism Spectrum Disorder. JAMA Psychiatry, 72(8), 767–777. https://doi.org/10.1001/jamapsychiatry.2015.0101
Article PubMed PubMed Central Google Scholar
Chien, H.-Y., Lin, H.-Y., Lai, M.-C., Gau, S.S.-F., & Tseng, W.-Y.I. (2015). Hyperconnectivity of the Right Posterior Temporo-parietal Junction Predicts Social Difficulties in Boys with Autism Spectrum Disorder. Autism Research, 8(4), 427–441. https://doi.org/10.1002/aur.1457
Constantino, J. N. (2013). Social responsiveness scale. In F. R. Volkmar (Ed.) Encyclopedia of autism spectrum disorders. Springer. https://doi.org/10.1007/978-1-4419-1698-3_296
Constantino, J., & Gruber, C. P. (2005). The social responsiveness scale (SRS) manual. Los Angeles: Western Psychological Services.
Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visualization of fMRI data. NMR in Biomedicine, 10(4–5), 171–178. https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5%3c171::AID-NBM453%3e3.0.CO;2-L
Article CAS PubMed Google Scholar
Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., Balsters, J. H., Baxter, L., Beggiato, A., Bernaerts, S., Blanken, L. M. E., Bookheimer, S. Y., Braden, B. B., Byrge, L., Castellanos, F. X., Dapretto, M., Delorme, R., Fair, D. A., Fishman, I., & Milham, M. P. (2017). Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific Data, 4(1), 1. https://doi.org/10.1038/sdata.2017.10
Dichter, G. S. (2012). Functional magnetic resonance imaging of autism spectrum disorders. Dialogues in Clinical Neuroscience, 14(3), 319–351. https://doi.org/10.31887/DCNS.2012.14.3/gdichter
Article PubMed PubMed Central Google Scholar
Dickie, E. W., Anticevic, A., Smith, D. E., Coalson, T. S., Manogaran, M., Calarco, N., Viviano, J. D., Glasser, M. F., Van Essen, D. C., & Voineskos, A. N. (2019). Ciftify: A framework for surface-based analysis of legacy MR acquisitions. NeuroImage, 197, 818–826. https://doi.org/10.1016/j.neuroimage.2019.04.078
Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: A robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 1. https://doi.org/10.1038/s41592-018-0235-4
Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021
Fleming, S. M., & Dolan, R. J. (2012). The neural basis of metacognitive ability. Philosophical Transactions of the Royal Society b: Biological Sciences, 367(1594), 1338–1349. https://doi.org/10.1098/rstb.2011.0417
Fortin, J.-P., Cullen, N., Sheline, Y. I., Taylor, W. D., Aselcioglu, I., Cook, P. A., Adams, P., Cooper, C., Fava, M., McGrath, P. J., McInnis, M., Phillips, M. L., Trivedi, M. H., Weissman, M. M., & Shinohara, R. T. (2018). Harmonization of cortical thickness measurements across scanners and sites. NeuroImage, 167, 104–120. https://doi.org/10.1016/j.neuroimage.2017.11.024
Gioia, G. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2015). Behavior Rating Inventory of Executive Function®, Second Edition (BRIEF®2, BRIEF2, BRIEF-2). https://doi.org/10.1037/t79467-000
Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., & Jenkinson, M. (2013). The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127
Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. NeuroImage, 48(1), 63–72. https://doi.org/10.1016/j.neuroimage.2009.06.060
Hernandez, L. M., Rudie, J. D., Green, S. A., Bookheimer, S., & Dapretto, M. (2015). Neural Signatures of Autism Spectrum Disorders: Insights into Brain Network Dynamics. Neuropsychopharmacology, 40(1), 1. https://doi.org/10.1038/npp.2014.172
Hodges, H., Fealko, C., & Soares, N. (2020). Autism spectrum disorder: Definition, epidemiology, causes, and clinical evaluation. Translational Pediatrics, 9(Suppl 1), S55–S65. https://doi.org/10.21037/tp.2019.09.09
Article PubMed PubMed Central Google Scholar
Hong, S.-J., Vos de Wael, R., Bethlehem, R. A. I., Lariviere, S., Paquola, C., Valk, S. L., Milham, M. P., Di Martino, A., Margulies, D. S., Smallwood, J., & Bernhardt, B. C. (2019). Atypical functional connectome hierarchy in autism. Nature Communications, 10(1), 1. https://doi.org/10.1038/s41467-019-08944-1
Hotelling, H. (1992). Relations Between Two Sets of Variates. In S. Kotz & N. L. Johnson (Eds.), Breakthroughs in Statistics: Methodology and Distribution (pp. 162–190). Springer. https://doi.org/10.1007/978-1-4612-4380-9_14
Hours, C., Recasens, C., & Baleyte, J.-M. (2022). ASD and ADHD Comorbidity: What Are We Talking About? Frontiers in Psychiatry, 13, 837424. https://doi.org/10.3389/fpsyt.2022.837424
Article PubMed PubMed Central Google Scholar
Jones, T. B., Bandettini, P. A., Kenworthy, L., Case, L. K., Milleville, S. C., Martin, A., & Birn, R. M. (2010). Sources of group differences in functional connectivity: An investigation applied to autism spectrum disorder. NeuroImage, 49(1), 401–414. https://doi.org/10.1016/j.neuroimage.2009.07.051
Kennedy, D. P., & Courchesne, E. (2008). The intrinsic functional organization of the brain is altered in autism. NeuroImage, 39(4), 1877–1885. https://doi.org/10.1016/j.neuroimage.2007.10.052
Klein, A., Ghosh, S. S., Bao, F. S., Giard, J., Häme, Y., Stavsky, E., Lee, N., Rossa, B., Reuter, M., Neto, E. C., & Keshavan, A. (2017). Mindboggling morphometry of human brains. PLOS Computational Biology, 13(2), e1005350. https://doi.org/10.1371/journal.pcbi.1005350
Article CAS PubMed PubMed Central Google Scholar
Lai, M.-C., Kassee, C., Besney, R., Bonato, S., Hull, L., Mandy, W., Szatmari, P., & Ameis, S. H. (2019). Prevalence of co-occurring mental health diagnoses in the autism population: A systematic review and meta-analysis. The Lancet Psychiatry, 6(10), 819–829. https://doi.org/10.1016/S2215-0366(19)30289-5
Langs, G., Golland, P., & Ghosh, S. S. (2015). Predicting Activation Across Individuals with Resting-State Functional Connectivity Based Multi-Atlas Label Fusion. In N. Navab, J. Hornegger, W. M. Wells, & A. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 (pp. 313–320). Springer International Publishing. https://doi.org/10.1007/978-3-319-24571-3_38
Larivière, S., Paquola, C., Park, B., Royer, J., Wang, Y., Benkarim, O., Wael, R. V. de, Valk, S. L., Thomopoulos, S. I., Kirschner, M., Consortium, E., Lewis, L. B., Evans, A. C., Sisodiya, S. M., McDonald, C. R., Thompson, P. M., & Bernhardt, B. C. (2021). The ENIGMA Toolbox: Cross-disorder integration and multiscale neural contextualization of multisite neuroimaging datasets. Nat Methods, 18, 698–700. https://doi.org/10.1038/s41592-021-01186-4
Lau, W. K. W., Leung, M.-K., & Lau, B. W. M. (2019). Resting-state abnormalities in Autism Spectrum Disorders: A meta-analysis. Scientific Reports, 9(1), 1. https://doi.org/10.1038/s41598-019-40427-7
Liloia, D., Cauda, F., Uddin, L. Q., Manuello, J., Mancuso, L., Keller, R., Nani, A., & Costa, T. (2022). Revealing the selectivity of neuroanatomical alteration in autism spectrum disorder via reverse inference. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 8, 1075. https://doi.org/10.1016/j.bpsc.2022.01.007
Comments (0)