Machine-learning approaches to predict individualized treatment effect using a randomized controlled trial

Dahabreh IJ, Hayward R, Kent DM. Using group data to treat individuals: understanding heterogeneous treatment effects in the age of precision medicine and patient-centred evidence. Int J Epidemiol. 2016;45:2184–93.

PubMed  PubMed Central  Google Scholar 

Kent DM, Paulus JK, van Klaveren D, D’Agostino R, Goodman S, Hayward R, Ioannidis JPA, Patrick-Lake B, Morton S, Pencina M, Raman G, Ross JS, Selker HP, Varadhan R, Vickers A, Wong JB, Steyerberg EW. The predictive approaches to treatment effect heterogeneity (PATH) statement. Ann Intern Med. 2020;172:35–45.

Article  PubMed  Google Scholar 

Imai K, Ratkovic M. Estimating treatment effect heterogeneity in randomized program evaluation. Ann Appl Stat. 2013;7:443–70.

Article  Google Scholar 

Abrevaya J, Hsu YC, Lieli RP. Estimating conditional average treatment effects. J Bus Econ Stat. 2015;33:485–505.

Article  Google Scholar 

Wager S, Athey S. Estimation and inference of heterogeneous treatment effects using random forests. J Am Stat Assoc. 2018;113:1228–42.

Article  CAS  Google Scholar 

Künzel SR, Sekhon JS, Bickel PJ, Yu B. Metalearners for estimating heterogeneous treatment effects using machine learning. Proc Natl Acad Sci. 2019;116:4156–65.

Article  PubMed  PubMed Central  Google Scholar 

Jacob D. Cross-fitting and averaging for machine learning estimation of heterogeneous treatment effects [Internet]. 2020 [cited 2022 Sep 29]: Available from: http://arxiv.org/abs/2007.02852

Hahn PR, Murray JS, Carvalho C. Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects (with Discussion). Bayesian Anal. 2020;15:965–1056.

Article  Google Scholar 

Imai K, Li ML. Statistical inference for heterogeneous treatment effects discovered by generic machine learning in randomized experiments [Internet]. 2022 [cited 2023 Mar 23]: Available from: http://arxiv.org/abs/2203.14511

VanderWeele TJ, Knol MJ. On the interpretation of subgroup analyses in randomized trials: heterogeneity versus secondary interventions. Ann Intern Med. 2011. https://doi.org/10.7326/0003-4819-154-10-201105170-00008.

Article  PubMed  PubMed Central  Google Scholar 

Brookes ST, Whitley E, Peters TJ, Mulheran PA, Egger M, Davey SG. Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives. Health Technol Assess. 2001;5:1–56.

Article  CAS  PubMed  Google Scholar 

Ioannidis JPA. Why most discovered true associations are inflated. Epidemiology. 2008;19:640–8.

Article  PubMed  Google Scholar 

Rothwell PM. Treating individuals 2. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. Lancet. 2005;365:176–86.

Article  PubMed  Google Scholar 

Wallach JD, Sullivan PG, Trepanowski JF, Steyerberg EW, Ioannidis JPA. Sex based subgroup differences in randomized controlled trials: empirical evidence from Cochrane meta-analyses. BMJ. 2016;355:i5826.

Article  PubMed  PubMed Central  Google Scholar 

Hernández AV, Boersma E, Murray GD, Habbema JDF, Steyerberg EW. Subgroup analyses in therapeutic cardiovascular clinical trials: are most of them misleading? Am Heart J. 2006;151:257–64.

Article  PubMed  Google Scholar 

Hernan MA, Robins JM. Causal Inference: what If. Boca Raton: Chapman & Hall/CRC; 2020.

Google Scholar 

Kent DM, Steyerberg E, van Klaveren D. Personalized evidence based medicine: predictive approaches to heterogeneous treatment effects. BMJ. 2018;363:k4245.

Article  PubMed  PubMed Central  Google Scholar 

Kohli-Lynch C, Thanassoulis G, Pencina M, Sehayek D, Pencina K, Moran A, Sniderman AD. The causal-benefit model to prevent cardiovascular events. JACC Adv. 2024;3:100825.

Article  PubMed  PubMed Central  Google Scholar 

Nie X, Wager S. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika. 2021;108:299–319.

Article  Google Scholar 

Logan BR, Sparapani R, McCulloch RE, Laud PW. Decision making and uncertainty quantification for individualized treatments using bayesian additive regression trees. Stat Methods Med Res. 2019;28:1079–93.

Article  PubMed  Google Scholar 

Imai K, Li ML. Experimental evaluation of individualized treatment rules. J Am Stat Assoc. 2021;118:1–15.

Google Scholar 

Qian M, Murphy SA. Performance guarantees for individualized treatment rules. Ann Stat. 2011;39:1180–210.

Article  PubMed  PubMed Central  Google Scholar 

Athey S, Imbens G. Recursive partitioning for heterogeneous causal effects. Proc Natl Acad Sci U S A. 2016;113:7353–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lundberg SM, Lee SI. A unified approach to interpreting model predictions [Internet]. In: Advances in neural information processing systems. Curran Associates, Inc.; 2017 [cited 2023 Aug 15]: Available from: https://papers.nips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html

Green DP, Kern HL. Modeling heterogeneous treatment effects in survey experiments with bayesian additive regression trees. Public Opin Q. 2012;76:491–511.

Article  Google Scholar 

Goligher EC, Lawler PR, Jensen TP, Talisa V, Berry LR, Lorenzi E, McVerry BJ, Chang CCH, et al. Heterogeneous treatment effects of therapeutic-dose heparin in patients hospitalized for COVID-19. JAMA. 2023;329:1066–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang H, Guo J, Shaaban CE, Feng Z, Wu Y, Magoc T, Hu X, Donahoo WT, DeKosky ST, Bian J. Heterogeneous treatment effects of metformin on risk of dementia in patients with type 2 diabetes: A longitudinal observational study. Alzheimers Dement. 2023;20:975.

Article  PubMed  PubMed Central  Google Scholar 

Edward JA, Josey K, Bahn G, Caplan L, Reusch JEB, Reaven P, Ghosh D, Raghavan S. Heterogeneous treatment effects of intensive glycemic control on major adverse cardiovascular events in the ACCORD and VADT trials: a machine-learning analysis. Cardiovasc Diabetol. 2022;21:58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prosperi M, Guo Y, Sperrin M, Koopman JS, Min JS, He X, Rich S, Wang M, Buchan IE, Bian J. Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nat Mach Intell. 2020;2:369–75.

Article  Google Scholar 

Kennedy EH. Towards optimal doubly robust estimation of heterogeneous causal effects [Internet]. 2022 [cited 2023 May 23]; Available from: http://arxiv.org/abs/2004.14497

Mansournia MA, Higgins JPT, Sterne JAC, Hernán MA. Biases in randomized trials: a conversation between trialists and epidemiologists. Epidemiology. 2017;28:54–9.

Article  PubMed  PubMed Central  Google Scholar 

Hernán MA, Hernández-Díaz S. Beyond the intention-to-treat in comparative effectiveness research. Clin Trials. 2012;9:48–55.

Article  PubMed  Google Scholar 

Mueller S, Pearl J. Personalized decision making – A conceptual introduction. Journal of Causal Inference [Internet]. 2023 [cited 2024 Feb 20]: 11. Available from: https://www.degruyter.com/document/doi/https://doi.org/10.1515/jci-2022-0050/html

Chernozhukov V, Demirer M, Duflo E, Fern’andez-Val I. Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments [Internet]. arXiv.org; 2020 [cited 2022 Jan 17]: Available from: https://ideas.repec.org/p/arx/papers/1712.04802.html

Powers S, Qian J, Jung K, Schuler A, Shah NH, Hastie T, Tibshirani R. Some methods for heterogeneous treatment effect estimation in high dimensions. Stat Med. 2018;37:1767–87.

Article  PubMed  PubMed Central  Google Scholar 

Fan Q, Hsu Y-C, Lieli RP, Zhang Y. Estimation of conditional average treatment effects with high-dimensional data. J Bus Econ Stat. 2022;40:313–27.

Article  Google Scholar 

Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, Robins J. Double/debiased machine learning for treatment and structural parameters. Economet J. 2018;21:C1–68.

Article  Google Scholar 

Foster DJ, Syrgkanis V. Orthogonal statistical learning. Ann Stat. 2023;51:879–908.

Article  Google Scholar 

Hill JL. bayesian nonparametric modeling for causal inference. J Comput Graph Stat. 2011;20:217–40.

Article  Google Scholar 

Chernozhukov V, Escanciano JC, Ichimura H, Newey WK, Robins JM. Locally robust semiparametric estimation. Econometrica. 2022;90:1501–35.

Article  Google Scholar 

Hirano K, Imbens G, Ridder G. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica. 2003;71:1161–89.

Article 

Comments (0)

No login
gif