Dahabreh IJ, Hayward R, Kent DM. Using group data to treat individuals: understanding heterogeneous treatment effects in the age of precision medicine and patient-centred evidence. Int J Epidemiol. 2016;45:2184–93.
PubMed PubMed Central Google Scholar
Kent DM, Paulus JK, van Klaveren D, D’Agostino R, Goodman S, Hayward R, Ioannidis JPA, Patrick-Lake B, Morton S, Pencina M, Raman G, Ross JS, Selker HP, Varadhan R, Vickers A, Wong JB, Steyerberg EW. The predictive approaches to treatment effect heterogeneity (PATH) statement. Ann Intern Med. 2020;172:35–45.
Imai K, Ratkovic M. Estimating treatment effect heterogeneity in randomized program evaluation. Ann Appl Stat. 2013;7:443–70.
Abrevaya J, Hsu YC, Lieli RP. Estimating conditional average treatment effects. J Bus Econ Stat. 2015;33:485–505.
Wager S, Athey S. Estimation and inference of heterogeneous treatment effects using random forests. J Am Stat Assoc. 2018;113:1228–42.
Künzel SR, Sekhon JS, Bickel PJ, Yu B. Metalearners for estimating heterogeneous treatment effects using machine learning. Proc Natl Acad Sci. 2019;116:4156–65.
Article PubMed PubMed Central Google Scholar
Jacob D. Cross-fitting and averaging for machine learning estimation of heterogeneous treatment effects [Internet]. 2020 [cited 2022 Sep 29]: Available from: http://arxiv.org/abs/2007.02852
Hahn PR, Murray JS, Carvalho C. Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects (with Discussion). Bayesian Anal. 2020;15:965–1056.
Imai K, Li ML. Statistical inference for heterogeneous treatment effects discovered by generic machine learning in randomized experiments [Internet]. 2022 [cited 2023 Mar 23]: Available from: http://arxiv.org/abs/2203.14511
VanderWeele TJ, Knol MJ. On the interpretation of subgroup analyses in randomized trials: heterogeneity versus secondary interventions. Ann Intern Med. 2011. https://doi.org/10.7326/0003-4819-154-10-201105170-00008.
Article PubMed PubMed Central Google Scholar
Brookes ST, Whitley E, Peters TJ, Mulheran PA, Egger M, Davey SG. Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives. Health Technol Assess. 2001;5:1–56.
Article CAS PubMed Google Scholar
Ioannidis JPA. Why most discovered true associations are inflated. Epidemiology. 2008;19:640–8.
Rothwell PM. Treating individuals 2. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. Lancet. 2005;365:176–86.
Wallach JD, Sullivan PG, Trepanowski JF, Steyerberg EW, Ioannidis JPA. Sex based subgroup differences in randomized controlled trials: empirical evidence from Cochrane meta-analyses. BMJ. 2016;355:i5826.
Article PubMed PubMed Central Google Scholar
Hernández AV, Boersma E, Murray GD, Habbema JDF, Steyerberg EW. Subgroup analyses in therapeutic cardiovascular clinical trials: are most of them misleading? Am Heart J. 2006;151:257–64.
Hernan MA, Robins JM. Causal Inference: what If. Boca Raton: Chapman & Hall/CRC; 2020.
Kent DM, Steyerberg E, van Klaveren D. Personalized evidence based medicine: predictive approaches to heterogeneous treatment effects. BMJ. 2018;363:k4245.
Article PubMed PubMed Central Google Scholar
Kohli-Lynch C, Thanassoulis G, Pencina M, Sehayek D, Pencina K, Moran A, Sniderman AD. The causal-benefit model to prevent cardiovascular events. JACC Adv. 2024;3:100825.
Article PubMed PubMed Central Google Scholar
Nie X, Wager S. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika. 2021;108:299–319.
Logan BR, Sparapani R, McCulloch RE, Laud PW. Decision making and uncertainty quantification for individualized treatments using bayesian additive regression trees. Stat Methods Med Res. 2019;28:1079–93.
Imai K, Li ML. Experimental evaluation of individualized treatment rules. J Am Stat Assoc. 2021;118:1–15.
Qian M, Murphy SA. Performance guarantees for individualized treatment rules. Ann Stat. 2011;39:1180–210.
Article PubMed PubMed Central Google Scholar
Athey S, Imbens G. Recursive partitioning for heterogeneous causal effects. Proc Natl Acad Sci U S A. 2016;113:7353–60.
Article CAS PubMed PubMed Central Google Scholar
Lundberg SM, Lee SI. A unified approach to interpreting model predictions [Internet]. In: Advances in neural information processing systems. Curran Associates, Inc.; 2017 [cited 2023 Aug 15]: Available from: https://papers.nips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
Green DP, Kern HL. Modeling heterogeneous treatment effects in survey experiments with bayesian additive regression trees. Public Opin Q. 2012;76:491–511.
Goligher EC, Lawler PR, Jensen TP, Talisa V, Berry LR, Lorenzi E, McVerry BJ, Chang CCH, et al. Heterogeneous treatment effects of therapeutic-dose heparin in patients hospitalized for COVID-19. JAMA. 2023;329:1066–77.
Article CAS PubMed PubMed Central Google Scholar
Tang H, Guo J, Shaaban CE, Feng Z, Wu Y, Magoc T, Hu X, Donahoo WT, DeKosky ST, Bian J. Heterogeneous treatment effects of metformin on risk of dementia in patients with type 2 diabetes: A longitudinal observational study. Alzheimers Dement. 2023;20:975.
Article PubMed PubMed Central Google Scholar
Edward JA, Josey K, Bahn G, Caplan L, Reusch JEB, Reaven P, Ghosh D, Raghavan S. Heterogeneous treatment effects of intensive glycemic control on major adverse cardiovascular events in the ACCORD and VADT trials: a machine-learning analysis. Cardiovasc Diabetol. 2022;21:58.
Article CAS PubMed PubMed Central Google Scholar
Prosperi M, Guo Y, Sperrin M, Koopman JS, Min JS, He X, Rich S, Wang M, Buchan IE, Bian J. Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nat Mach Intell. 2020;2:369–75.
Kennedy EH. Towards optimal doubly robust estimation of heterogeneous causal effects [Internet]. 2022 [cited 2023 May 23]; Available from: http://arxiv.org/abs/2004.14497
Mansournia MA, Higgins JPT, Sterne JAC, Hernán MA. Biases in randomized trials: a conversation between trialists and epidemiologists. Epidemiology. 2017;28:54–9.
Article PubMed PubMed Central Google Scholar
Hernán MA, Hernández-Díaz S. Beyond the intention-to-treat in comparative effectiveness research. Clin Trials. 2012;9:48–55.
Mueller S, Pearl J. Personalized decision making – A conceptual introduction. Journal of Causal Inference [Internet]. 2023 [cited 2024 Feb 20]: 11. Available from: https://www.degruyter.com/document/doi/https://doi.org/10.1515/jci-2022-0050/html
Chernozhukov V, Demirer M, Duflo E, Fern’andez-Val I. Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments [Internet]. arXiv.org; 2020 [cited 2022 Jan 17]: Available from: https://ideas.repec.org/p/arx/papers/1712.04802.html
Powers S, Qian J, Jung K, Schuler A, Shah NH, Hastie T, Tibshirani R. Some methods for heterogeneous treatment effect estimation in high dimensions. Stat Med. 2018;37:1767–87.
Article PubMed PubMed Central Google Scholar
Fan Q, Hsu Y-C, Lieli RP, Zhang Y. Estimation of conditional average treatment effects with high-dimensional data. J Bus Econ Stat. 2022;40:313–27.
Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, Robins J. Double/debiased machine learning for treatment and structural parameters. Economet J. 2018;21:C1–68.
Foster DJ, Syrgkanis V. Orthogonal statistical learning. Ann Stat. 2023;51:879–908.
Hill JL. bayesian nonparametric modeling for causal inference. J Comput Graph Stat. 2011;20:217–40.
Chernozhukov V, Escanciano JC, Ichimura H, Newey WK, Robins JM. Locally robust semiparametric estimation. Econometrica. 2022;90:1501–35.
Hirano K, Imbens G, Ridder G. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica. 2003;71:1161–89.
Comments (0)