Identification of effect modifiers using a stratified Mendelian randomization algorithmic framework

Chen A, Stecker E, Warden BA. Direct oral anticoagulant use: a practical guide to common clinical challenges. J Am Heart Assoc. 2020;9:e017559. https://doi.org/10.1161/JAHA.120.017559.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alvarez-Jimenez L, Morales-Palomo F, Moreno-Cabañas A, Ortega JF, Mora-Rodríguez R. Effects of statin therapy on glycemic control and insulin resistance: a systematic review and meta-analysis. Eur J Pharmacol. 2023;947:175672. https://doi.org/10.1016/j.ejphar.2023.175672.

Article  CAS  PubMed  Google Scholar 

Leopold JA, Loscalzo J. Emerging role of precision medicine in cardiovascular disease. Circ Res. 2018;122:1302–15. https://doi.org/10.1161/CIRCRESAHA.117.310782.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pocock SJ, Assmann SE, Enos LE, Kasten LE. Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practiceand problems. Stat Med. 2002;21:2917–30. https://doi.org/10.1002/sim.1296.

Article  PubMed  Google Scholar 

Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med. 2006;144:201–9. https://doi.org/10.7326/0003-4819-144-3-200602070-00009.

Article  PubMed  Google Scholar 

Eichler K, Puhan MA, Steurer J, Bachmann LM. Prediction of first coronary events with the Framingham score: a systematic review. Am Heart J. 2007;153:722-731.e8. https://doi.org/10.1016/j.ahj.2007.02.027.

Article  PubMed  Google Scholar 

Rahimi K, Bidel Z, Nazarzadeh M, Copland E, Canoy D, Wamil M, et al. Age-stratified and blood-pressure-stratified effects of blood-pressure-lowering pharmacotherapy for the prevention of cardiovascular disease and death: an individual participant-level data meta-analysis. The Lancet. 2021;398:1053–64. https://doi.org/10.1016/S0140-6736(21)01921-8.

Article  Google Scholar 

Schmidt AF, Klungel OH, Nielen M, de Boer A, Groenwold RHH, Hoes AW. Tailoring treatments using treatment effect modification. Pharmacoepidemiol Drug Saf. 2016;25:355–62. https://doi.org/10.1002/pds.3965.

Article  CAS  PubMed  Google Scholar 

Wagner M, Balk EM, Kent DM, Kasiske BL, Ekberg H. Subgroup analyses in randomized controlled trials: the need for risk stratification in kidney transplantation. Am J Transplant. 2009;9:2217–22. https://doi.org/10.1111/j.1600-6143.2009.02802.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ference BA, Holmes MV, Smith GD. Using Mendelian randomization to improve the design of randomized trials. Cold Spring Harb Perspect Med. 2021;11:a040980. https://doi.org/10.1101/cshperspect.a040980.

Article  PubMed  PubMed Central  Google Scholar 

Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafò MR, et al. Mendelian randomization. Nat Rev Methods Primers. 2022;2:1–21. https://doi.org/10.1038/s43586-021-00092-5.

Article  CAS  Google Scholar 

Walker V, Sanderson E, Levin MG, Damraurer SM, Feeney T, Davies NM. Reading and conducting instrumental variable studies: guide, glossary, and checklist. BMJ. 2024;387:e078093. https://doi.org/10.1136/bmj-2023-078093.

Article  PubMed  PubMed Central  Google Scholar 

Silverwood RJ, Holmes MV, Dale CE, Lawlor DA, Whittaker JC, Smith GD, et al. Testing for non-linear causal effects using a binary genotype in a Mendelian randomization study: application to alcohol and cardiovascular traits. Int J Epidemiol. 2014;43:1781–90.

Article  PubMed  PubMed Central  Google Scholar 

Burgess S, Davies NM, Thompson SG, Consortium on behalf of E-I. Instrumental variable analysis with a nonlinear exposure-outcome relationship. Epidemiology. 2014;25:877. https://doi.org/10.1097/EDE.0000000000000161.

Article  PubMed  PubMed Central  Google Scholar 

Staley JR, Burgess S. Semiparametric methods for estimation of a nonlinear exposure-outcome relationship using instrumental variables with application to Mendelian randomization. Genet Epidemiol. 2017;41:341–52. https://doi.org/10.1002/gepi.22041.

Article  PubMed  PubMed Central  Google Scholar 

Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D, et al. Illustrating bias due to conditioning on a collider. Int J Epidemiol. 2010;39:417–20.

Article  PubMed  Google Scholar 

Coscia C, Gill D, Benítez R, Pérez T, Malats N, Burgess S. Avoiding collider bias in Mendelian randomization when performing stratified analyses. Eur J Epidemiol. 2022;37:671–82. https://doi.org/10.1007/s10654-022-00879-0.

Article  PubMed  PubMed Central  Google Scholar 

Burgess S. Towards more reliable non-linear mendelian randomization investigations. Eur J Epidemiol. 2024;39:447–9. https://doi.org/10.1007/s10654-024-01121-9.

Article  PubMed  PubMed Central  Google Scholar 

Smith GD. Mendelian randomisation and vitamin D: the importance of model assumptions. Lancet Diabetes Endocrinol. 2023;11:14. https://doi.org/10.1016/S2213-8587(22)00345-X.

Article  CAS  PubMed  Google Scholar 

Burgess S, Butterworth AS. Dose–response relationships for vitamin D and all-cause mortality—Authors’ reply. Lancet Diabetes Endocrinol. 2022;10:158–9. https://doi.org/10.1016/S2213-8587(22)00015-8.

Article  CAS  PubMed  Google Scholar 

Wade KH, Hamilton FW, Carslake D, Sattar N, Davey Smith G, Timpson NJ. Challenges in undertaking nonlinear Mendelian randomization. Obesity. 2023;31:2887–90. https://doi.org/10.1002/oby.23927.

Article  PubMed  Google Scholar 

Tian H, Mason AM, Liu C, Burgess S. Relaxing parametric assumptions for non-linear Mendelian randomization using a doubly-ranked stratification method. PLoS Genet. 2023;19:e1010823. https://doi.org/10.1371/journal.pgen.1010823.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian H, Tom BDM, Burgess S. A data-adaptive method for investigating effect heterogeneity with high-dimensional covariates in Mendelian randomization. BMC Med Res Methodol. 2024;24:34. https://doi.org/10.1186/s12874-024-02153-1.

Article  PubMed  PubMed Central  Google Scholar 

Cortina JM. Interaction, nonlinearity, and multicollinearity: implications for multiple regression. J Manag. 1993;19:915–22. https://doi.org/10.1177/014920639301900411.

Article  Google Scholar 

Nazarzadeh M, Pinho-Gomes A-C, Bidel Z, Canoy D, Dehghan A, Smith Byrne K, et al. Genetic susceptibility, elevated blood pressure, and risk of atrial fibrillation: a Mendelian randomization study. Genome Med. 2021;13:38. https://doi.org/10.1186/s13073-021-00849-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martens LG, van Hamersveld D, le Cessie S, Willems van Dijk K, van Heemst D, Noordam R. The impact of sociodemographic status on the association of classical cardiovascular risk factors with coronary artery disease: a stratified Mendelian randomization study. J Clin Epidemiol. 2023;162:56–62. https://doi.org/10.1016/j.jclinepi.2023.07.009.

Article  PubMed  Google Scholar 

Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res. 2017;26:2333–55. https://doi.org/10.1177/0962280215597579.

Article  PubMed  Google Scholar 

Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi SW, Mak TS-H, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020;15:2759–72.

Article  CAS 

Comments (0)

No login
gif