Chen A, Stecker E, Warden BA. Direct oral anticoagulant use: a practical guide to common clinical challenges. J Am Heart Assoc. 2020;9:e017559. https://doi.org/10.1161/JAHA.120.017559.
Article CAS PubMed PubMed Central Google Scholar
Alvarez-Jimenez L, Morales-Palomo F, Moreno-Cabañas A, Ortega JF, Mora-Rodríguez R. Effects of statin therapy on glycemic control and insulin resistance: a systematic review and meta-analysis. Eur J Pharmacol. 2023;947:175672. https://doi.org/10.1016/j.ejphar.2023.175672.
Article CAS PubMed Google Scholar
Leopold JA, Loscalzo J. Emerging role of precision medicine in cardiovascular disease. Circ Res. 2018;122:1302–15. https://doi.org/10.1161/CIRCRESAHA.117.310782.
Article CAS PubMed PubMed Central Google Scholar
Pocock SJ, Assmann SE, Enos LE, Kasten LE. Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practiceand problems. Stat Med. 2002;21:2917–30. https://doi.org/10.1002/sim.1296.
Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med. 2006;144:201–9. https://doi.org/10.7326/0003-4819-144-3-200602070-00009.
Eichler K, Puhan MA, Steurer J, Bachmann LM. Prediction of first coronary events with the Framingham score: a systematic review. Am Heart J. 2007;153:722-731.e8. https://doi.org/10.1016/j.ahj.2007.02.027.
Rahimi K, Bidel Z, Nazarzadeh M, Copland E, Canoy D, Wamil M, et al. Age-stratified and blood-pressure-stratified effects of blood-pressure-lowering pharmacotherapy for the prevention of cardiovascular disease and death: an individual participant-level data meta-analysis. The Lancet. 2021;398:1053–64. https://doi.org/10.1016/S0140-6736(21)01921-8.
Schmidt AF, Klungel OH, Nielen M, de Boer A, Groenwold RHH, Hoes AW. Tailoring treatments using treatment effect modification. Pharmacoepidemiol Drug Saf. 2016;25:355–62. https://doi.org/10.1002/pds.3965.
Article CAS PubMed Google Scholar
Wagner M, Balk EM, Kent DM, Kasiske BL, Ekberg H. Subgroup analyses in randomized controlled trials: the need for risk stratification in kidney transplantation. Am J Transplant. 2009;9:2217–22. https://doi.org/10.1111/j.1600-6143.2009.02802.x.
Article CAS PubMed PubMed Central Google Scholar
Ference BA, Holmes MV, Smith GD. Using Mendelian randomization to improve the design of randomized trials. Cold Spring Harb Perspect Med. 2021;11:a040980. https://doi.org/10.1101/cshperspect.a040980.
Article PubMed PubMed Central Google Scholar
Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafò MR, et al. Mendelian randomization. Nat Rev Methods Primers. 2022;2:1–21. https://doi.org/10.1038/s43586-021-00092-5.
Walker V, Sanderson E, Levin MG, Damraurer SM, Feeney T, Davies NM. Reading and conducting instrumental variable studies: guide, glossary, and checklist. BMJ. 2024;387:e078093. https://doi.org/10.1136/bmj-2023-078093.
Article PubMed PubMed Central Google Scholar
Silverwood RJ, Holmes MV, Dale CE, Lawlor DA, Whittaker JC, Smith GD, et al. Testing for non-linear causal effects using a binary genotype in a Mendelian randomization study: application to alcohol and cardiovascular traits. Int J Epidemiol. 2014;43:1781–90.
Article PubMed PubMed Central Google Scholar
Burgess S, Davies NM, Thompson SG, Consortium on behalf of E-I. Instrumental variable analysis with a nonlinear exposure-outcome relationship. Epidemiology. 2014;25:877. https://doi.org/10.1097/EDE.0000000000000161.
Article PubMed PubMed Central Google Scholar
Staley JR, Burgess S. Semiparametric methods for estimation of a nonlinear exposure-outcome relationship using instrumental variables with application to Mendelian randomization. Genet Epidemiol. 2017;41:341–52. https://doi.org/10.1002/gepi.22041.
Article PubMed PubMed Central Google Scholar
Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D, et al. Illustrating bias due to conditioning on a collider. Int J Epidemiol. 2010;39:417–20.
Coscia C, Gill D, Benítez R, Pérez T, Malats N, Burgess S. Avoiding collider bias in Mendelian randomization when performing stratified analyses. Eur J Epidemiol. 2022;37:671–82. https://doi.org/10.1007/s10654-022-00879-0.
Article PubMed PubMed Central Google Scholar
Burgess S. Towards more reliable non-linear mendelian randomization investigations. Eur J Epidemiol. 2024;39:447–9. https://doi.org/10.1007/s10654-024-01121-9.
Article PubMed PubMed Central Google Scholar
Smith GD. Mendelian randomisation and vitamin D: the importance of model assumptions. Lancet Diabetes Endocrinol. 2023;11:14. https://doi.org/10.1016/S2213-8587(22)00345-X.
Article CAS PubMed Google Scholar
Burgess S, Butterworth AS. Dose–response relationships for vitamin D and all-cause mortality—Authors’ reply. Lancet Diabetes Endocrinol. 2022;10:158–9. https://doi.org/10.1016/S2213-8587(22)00015-8.
Article CAS PubMed Google Scholar
Wade KH, Hamilton FW, Carslake D, Sattar N, Davey Smith G, Timpson NJ. Challenges in undertaking nonlinear Mendelian randomization. Obesity. 2023;31:2887–90. https://doi.org/10.1002/oby.23927.
Tian H, Mason AM, Liu C, Burgess S. Relaxing parametric assumptions for non-linear Mendelian randomization using a doubly-ranked stratification method. PLoS Genet. 2023;19:e1010823. https://doi.org/10.1371/journal.pgen.1010823.
Article CAS PubMed PubMed Central Google Scholar
Tian H, Tom BDM, Burgess S. A data-adaptive method for investigating effect heterogeneity with high-dimensional covariates in Mendelian randomization. BMC Med Res Methodol. 2024;24:34. https://doi.org/10.1186/s12874-024-02153-1.
Article PubMed PubMed Central Google Scholar
Cortina JM. Interaction, nonlinearity, and multicollinearity: implications for multiple regression. J Manag. 1993;19:915–22. https://doi.org/10.1177/014920639301900411.
Nazarzadeh M, Pinho-Gomes A-C, Bidel Z, Canoy D, Dehghan A, Smith Byrne K, et al. Genetic susceptibility, elevated blood pressure, and risk of atrial fibrillation: a Mendelian randomization study. Genome Med. 2021;13:38. https://doi.org/10.1186/s13073-021-00849-3.
Article CAS PubMed PubMed Central Google Scholar
Martens LG, van Hamersveld D, le Cessie S, Willems van Dijk K, van Heemst D, Noordam R. The impact of sociodemographic status on the association of classical cardiovascular risk factors with coronary artery disease: a stratified Mendelian randomization study. J Clin Epidemiol. 2023;162:56–62. https://doi.org/10.1016/j.jclinepi.2023.07.009.
Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res. 2017;26:2333–55. https://doi.org/10.1177/0962280215597579.
Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.
Article CAS PubMed PubMed Central Google Scholar
Choi SW, Mak TS-H, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020;15:2759–72.
Comments (0)