Genome data based deep learning identified new genes predicting pharmacological treatment response of attention deficit hyperactivity disorder

Posner J, Polanczyk GV, Sonuga-Barke E. Attention-deficit hyperactivity disorder. Lancet. 2020;395:450–62. https://doi.org/10.1016/S0140-6736(19)33004-1.

Article  PubMed  PubMed Central  Google Scholar 

Faraone SV, Asherson P, Banaschewski T, Biederman J, Buitelaar JK, Ramos-Quiroga JA, et al. Attention-deficit/hyperactivity disorder. Nat Rev Dis Primers. 2015;1:15020. https://doi.org/10.1038/nrdp.2015.20.

Article  PubMed  Google Scholar 

Newcorn JH, Kratochvil CJ, Allen AJ, Casat CD, Ruff DD, Moore RJ, et al. Atomoxetine and osmotically released methylphenidate for the treatment of attention deficit hyperactivity disorder: acute comparison and differential response. Am J Psychiatry. 2008;165:721–30. https://doi.org/10.1176/appi.ajp.2007.05091676.

Article  PubMed  Google Scholar 

Su Y, Yang L, Stein MA, Cao Q, Wang Y. Osmotic release oral system methylphenidate versus atomoxetine for the treatment of attention-deficit/hyperactivity disorder in chinese youth: 8-week comparative efficacy and 1-year follow-up. J Child Adolesc Psychopharmacol. 2016;26:362–71. https://doi.org/10.1089/cap.2015.0031.

Article  CAS  PubMed  Google Scholar 

Michelini G, Norman LJ, Shaw P, Loo SK. Treatment biomarkers for ADHD: taking stock and moving forward. Transl Psychiatry. 2022;12:444. https://doi.org/10.1038/s41398-022-02207-2.

Article  PubMed  PubMed Central  Google Scholar 

Faraone SV, Larsson H. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry. 2019;24:562–75. https://doi.org/10.1038/s41380-018-0070-0.

Article  CAS  PubMed  Google Scholar 

Myer NM, Boland JR, Faraone SV. Pharmacogenetics predictors of methylphenidate efficacy in childhood ADHD. Mol Psychiatry. 2018;23:1929–36. https://doi.org/10.1038/mp.2017.234.

Article  CAS  PubMed  Google Scholar 

Michelson D, Read HA, Ruff DD, Witcher J, Zhang S, McCracken J. CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD. J Am Acad Child Adolesc Psychiatry. 2007;46:242–51. https://doi.org/10.1097/01.chi.0000246056.83791.b6.

Article  PubMed  Google Scholar 

Trzepacz PT, Williams DW, Feldman PD, Wrishko RE, Witcher JW, Buitelaar JK. CYP2D6 metabolizer status and atomoxetine dosing in children and adolescents with ADHD. Eur Neuropsychopharmacol. 2008;18:79–86. https://doi.org/10.1016/j.euroneuro.2007.06.002.

Article  CAS  PubMed  Google Scholar 

Zhong Y, Yang B, Su Y, Qian Y, Cao Q, Chang S, et al. The association with quantitative response to attention-deficit/hyperactivity disorder medication of the previously identified neurodevelopmental network genes. J Child Adolesc Psychopharmacol. 2020;30:348–54. https://doi.org/10.1089/cap.2018.0164.

Article  CAS  PubMed  Google Scholar 

Hegvik TA, Waløen K, Pandey SK, Faraone SV, Haavik J, Zayats T. Druggable genome in attention deficit/hyperactivity disorder and its co-morbid conditions. new avenues for treatment. Mol Psychiatry. 2021;26:4004–15. https://doi.org/10.1038/s41380-019-0540-z.

Article  PubMed  Google Scholar 

Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86. https://doi.org/10.1016/j.cell.2017.05.038.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brikell I, Wimberley T, Albiñana C, Pedersen EM, Vilhjálmsson BJ, Agerbo E, et al. Genetic, clinical, and sociodemographic factors associated with stimulant treatment outcomes in ADHD. Am J Psychiatry. 2021;178:854–64. https://doi.org/10.1176/appi.ajp.2020.20121686.

Article  PubMed  PubMed Central  Google Scholar 

Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20:467–84. https://doi.org/10.1038/s41576-019-0127-1.

Article  CAS  PubMed  Google Scholar 

Faraone SV, Gomeni R, Hull JT, Chaturvedi SA, Busse GD, Melyan Z, et al. Predicting efficacy of viloxazine extended-release treatment in adults with ADHD using an early change in ADHD symptoms: machine learning post Hoc analysis of a phase 3 clinical trial. Psychiatry Res. 2022;318:114922. https://doi.org/10.1016/j.psychres.2022.114922.

Article  CAS  PubMed  Google Scholar 

Rodriguez S, Hug C, Todorov P, Moret N, Boswell SA, Evans K, et al. Machine learning identifies candidates for drug repurposing in Alzheimer’s disease. Nat Commun. 2021;12:1033. https://doi.org/10.1038/s41467-021-21330-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Feng X, Li H, Cheng Li S, Qian Q, Wang Y. Deep learning model reveals potential risk genes for ADHD, especially Ephrin receptor gene EPHA5. Brief Bioinforma. 2021;22:bbab207. https://doi.org/10.1093/bib/bbab207.

Article  CAS  Google Scholar 

Yang L, Cao Q, Shuai L, Li H, Chan RCK, Wang Y. Comparative study of OROS-MPH and atomoxetine on executive function improvement in ADHD: a randomized controlled trial. Int J Neuropsychopharmacol. 2012;15:15–26. https://doi.org/10.1017/S1461145711001490.

Article  CAS  PubMed  Google Scholar 

Fu Z, Yuan J, Pei X, Zhang K, Xu C, Hu N, et al. Shared and unique effects of long-term administration of methylphenidate and atomoxetine on degree centrality in medication-naïve children with attention-deficit/hyperactive disorder. Int J Neuropsychopharmacol. 2022;25:709–19. https://doi.org/10.1093/ijnp/pyac028.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DuPaul GJ, Power TJ, Anastopoulos AD, Reid R. ADHD rating scale IV: checklists, norms, and clinical inter-pretation. NewYork: The Guilford Press; 1998.

Su YE, Wang H, Geng YG, Sun L, Du YS, Fan F, et al. Parent ratings of ADHD symptoms in Chinese urban schoolchildren: assessment with the Chinese ADHD rating scale-IV: home version. J Atten Disord. 2015;19:1022–33. https://doi.org/10.1177/1087054712461177.

Article  PubMed  Google Scholar 

Leuchter AF, McGough JJ, Korb AS, Hunter AM, Glaser PEA, Deldar A, et al. Neurophysiologic predictors of response to atomoxetine in young adults with attention deficit hyperactivity disorder: a pilot project. J Psychiatr Res. 2014;54:11–18. https://doi.org/10.1016/j.jpsychires.2014.03.009.

Article  PubMed  Google Scholar 

Dickson RA, Maki E, Gibbins C, Gutkin SW, Turgay A, Weiss MD. Time courses of improvement and symptom remission in children treated with atomoxetine for attention-deficit/hyperactivity disorder: analysis of Canadian open-label studies. Child Adolesc Psychiatry Ment Health. 2011;5:1–8. https://doi.org/10.1186/1753-2000-5-14.

Article  Google Scholar 

Pelsser LM, Frankena K, Toorman J, Savelkoul HF, Dubois AE, Pereira RR, et al. Effects of a restricted elimination diet on the behaviour of children with attention-deficit hyperactivity disorder (INCA study): a randomised controlled trial. Lancet. 2011;377:494–503. https://doi.org/10.1016/S0140-6736(10)62227-1.

Article  CAS  PubMed  Google Scholar 

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for Whole-Genome Association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75. https://doi.org/10.1086/519795.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Purcell S, Chang C. PLINK. 2007. www.cog-genomics.org/plink/1.9/.

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaSci. 2015;4:7. https://doi.org/10.1186/s13742-015-0047-8.

Article  CAS  Google Scholar 

de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219. https://doi.org/10.1371/journal.pcbi.1004219.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, et al. A global reference for human genetic variation. Nature. 2015;526:68–74. https://doi.org/10.1038/nature15393.

Article  CAS  PubMed  Google Scholar 

Sey NYA, Hu B, Mah W, Fauni H, McAfee JC, Rajarajan P, et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat Neurosci. 2020;23:583–93

Comments (0)

No login
gif