NIMH» Major Depression. https://www.nimh.nih.gov/health/statistics/major-depression.
Gaynes, B. N. et al. What did STAR*D teach us? Results from a large-scale, practical, clinical trial for patients with depression. Psychiatr. Serv. 60, 1439–1445 (2009).
Gaynes, B. N. et al. Defining treatment-resistant depression. Depress Anxiety 37, 134–145 (2020).
Hamburg, M. A. & Collins, F. S. The path to personalized medicine. N. Engl. J. Med. 363, 301–304 (2010).
Article CAS PubMed Google Scholar
Leaver, A. M. et al. Fronto-temporal connectivity predicts ECT outcome in major depression. Front. Psychiatry 9, (2018).
Wade, B. S. C. et al. Anterior default mode network and posterior insular connectivity is predictive of depressive symptom reduction following serial ketamine infusion—CORRIGENDUM. Psychol. Med. 52, 2399 (2022).
Article PubMed PubMed Central Google Scholar
Kang, S. G. & Cho, S. E. Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder. Int. J. Mol. Sci. 21, (2020).
Wade, B. S. C. et al. Accounting for symptom heterogeneity can improve neuroimaging models of antidepressant response after electroconvulsive therapy. Hum. Brain Mapp. 42, 5322–5333 (2021).
Article PubMed PubMed Central Google Scholar
Wade, B., Barbour, T., Ellard, K. & Camprodon, J. Predicting dimensional antidepressant response to repetitive transcranial magnetic stimulation using pretreatment resting-state functional connectivity. https://doi.org/10.21203/RS.3.RS-3204245/V1 (2023).
Simon, G. E. & Perlis, R. H. Personalized medicine for depression: can we match patients with treatments? Am. J. Psychiatry 167, 1445–1455 (2010).
Article PubMed PubMed Central Google Scholar
Malhotra, A. K., Zhang, J. P. & Lencz, T. Pharmacogenetics in psychiatry: translating research into clinical practice. Mol. Psychiatry 17, 760–769 (2012).
Article CAS PubMed Google Scholar
McClay, J. L. et al. Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics. Mol. Psychiatry 16, 76–85 (2011).
Article CAS PubMed Google Scholar
Rong, C. et al. Predictors of response to ketamine in treatment resistant major depressive disorder and bipolar disorder. Int J. Environ. Res Public Health 15, 771 (2018).
Article PubMed PubMed Central Google Scholar
Niciu, M. J. et al. Clinical predictors of ketamine response in treatment-resistant major depression. J. Clin. Psychiatry 75, (2014).
Luccarelli, J., McCoy, T. H., Seiner, S. J. & Henry, M. E. Real-world evidence of age-independent electroconvulsive therapy efficacy: a retrospective cohort study. Acta Psychiatr. Scand. 145, 100–108 (2022).
DeRubeis, R. J. et al. The personalized advantage index: translating research on prediction into individualized treatment recommendations. A demonstration. PLoS One 9, e83875 (2014).
Article PubMed PubMed Central Google Scholar
Huibers, M. J. H. et al. Predicting optimal outcomes in cognitive therapy or interpersonal psychotherapy for depressed individuals using the personalized advantage index approach. PLoS One 10, e0140771 (2015).
Article PubMed PubMed Central Google Scholar
Friedl, N. et al. Using the personalized advantage index for individual treatment allocation to blended treatment or treatment as usual for depression in secondary care. J. Clin. Med. 2020 9, 490 (2020).
Van Diermen, L. et al. Prediction of electroconvulsive therapy response and remission in major depression: meta-analysis. Br. J. Psychiatry 212, 71–80 (2018).
Zarate, C. A. et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 63, 856–864 (2006).
Article CAS PubMed Google Scholar
Berman, R. M. et al. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47, 351–354 (2000).
Article CAS PubMed Google Scholar
Anand, A. et al. Ketamine versus ECT for nonpsychotic treatment-resistant major depression. N. Engl. J. Med. 388, 2315–2325 (2023).
Article CAS PubMed Google Scholar
Camprodon, J. A. & Barbour, T. Introduction. Harv. Rev. Psychiatry 31, 97–100 (2023).
Rush, A. J. et al. The 16-item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): a psychometric evaluation in patients with chronic major depression. Biol. Psychiatry 54, 573–583 (2003).
Cameron, I. M. et al. Psychometric properties of the BASIS-24© (Behaviour and Symptom Identification Scale-Revised) Mental Health Outcome Measure. Int J. Psychiatry Clin. Pract. 11, 36–43 (2007).
Article CAS PubMed Google Scholar
Sundararajan, M. & Najmi, A. The many Shapley values for model explanation. In: Proc. 37th International Conference on Machine Learning, ICML 2020 PartF168147-12, 9210–9220 (2019).
McIntyre, R. S. et al. The meaningful change threshold as measured by the 16-item quick inventory of depressive symptomatology in adults with treatment-resistant major depressive and bipolar disorder receiving intravenous ketamine. J. Affect. Disord. 294, 592–596 (2021).
Article CAS PubMed Google Scholar
Austin, P. C. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar. Behav. Res. 46, 399 (2011).
Brookhart, M. A. et al. Variable selection for propensity score models. Am. J. Epidemiol. 163, 1149–1156 (2006).
Fernie, G. et al. Ketamine as the anaesthetic for electroconvulsive therapy: the KANECT randomised controlled trial. Br. J. Psychiatry 210, 422–428 (2017).
Article PubMed PubMed Central Google Scholar
Van Bronswijk, S. C. et al. Cross-trial prediction in psychotherapy: external validation of the Personalized Advantage Index using machine learning in two Dutch randomized trials comparing CBT versus IPT for depression. Psychother. Res. 31, 78–91 (2021).
Friedl, N., Berger, T., Krieger, T., Caspar, F. & Grosse Holtforth, M. Using the Personalized Advantage Index for individual treatment allocation to cognitive behavioral therapy (CBT) or a CBT with integrated exposure and emotion-focused elements (CBT-EE). 30, 763–775 (2019).
Sheu, Y. H. et al. AI-assisted prediction of differential response to antidepressant classes using electronic health records. npj Digit. Med. 6, 1–12 (2023).
Üstün, T. B. & Kessler, R. C. Global burden of depressive disorders: the issue of duration. Br. J. Psychiatry 181, 181–183 (2002).
Voineskos, D., Daskalakis, Z. J. & Blumberger, D. M. Management of treatment-resistant depression: challenges and strategies. Neuropsychiatr. Dis. Treat. 16, 221–234 (2020).
Article CAS PubMed PubMed Central Google Scholar
Lisanby, S. H., Maddox, J. H., Prudic, J., Devanand, D. P. & Sackeim, H. A. The effects of electroconvulsive therapy on memory of autobiographical and public events. Arch. Gen. Psychiatry 57, 581–590 (2000).
Article CAS PubMed Google Scholar
Freedman, R. et al. Can a Framework Be Established for the Safe Use of Ketamine? Am. J. Psychiatry 175, 587–589 (2018).
Schmitgen, M. M. et al. Exploring cortical predictors of clinical response to electroconvulsive therapy in major depression. Eur. Arch. Psychiatry Clin. Neurosci. 270, 253–261 (2020).
Jesus-Nunes, A. P. et al. Clinical predictors of depressive symptom remission and response after racemic ketamine and esketamine infusion in treatment-resistant depression. Hum. Psychopharmacol. Clin. Exp. 37, e2836 (2022).
Kellner, C. H. et al. Relief of expressed suicidal intent by ECT: a consortium for research in ECT study. Am. J. Psychiatry 162, 977–982 (2005).
Comments (0)