Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109:309–318. https://doi.org/10.1179/2047773215Y.0000000030
Article PubMed PubMed Central Google Scholar
Mó I, da Silva GJ (2024) Tackling carbapenem resistance and the imperative for one health Strategies—Insights from the Portuguese perspective. Antibiotics 13:557. https://doi.org/10.3390/antibiotics13060557
Article CAS PubMed PubMed Central Google Scholar
Thomsen J, Abdulrazzaq NM, Everett DB, Menezes GA, Senok A, Ayoub Moubareck C (2023) Carbapenem resistant Enterobacterales in the united Arab Emirates: a retrospective analysis from 2010 to 2021. Front Public Health 7;11:1244482. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745492: https://doi.org/10.3389/fpubh.2023.1244482
Hall BG, Barlow M Revised ambler classification of β-lactamases. J Antimicrob Chemother 2005 1;55:1050–1051. https://doi.org/10.1093/jac/dki130
Reference Gene Catalog - Pathogen Detection - NCBI; https://www.ncbi.nlm.nih.gov/pathogens/refgene/#blaOXA
Poirel L, Potron A, Nordmann P (2012) OXA-48-like carbapenemases: the Phantom menace. J Antimicrob Chemother 67:1597–1606. https://doi.org/10.1093/jac/dks121
Article CAS PubMed Google Scholar
Poirel L, Héritier C, Tolün V, Nordmann P (2004) Emergence of oxacillinase-mediated resistance to Imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 48:15–22. https://doi.org/10.1128/AAC.48.1.15-22.2004
Article CAS PubMed PubMed Central Google Scholar
Fröhlich C, Sørum V, Thomassen AM, Johnsen PJ, Leiros H-KS, Samuelsen Ø (2019) OXA-48-Mediated Ceftazidime-Avibactam Resistance Is Associated with Evolutionary Trade-Offs. mSphere 27;4:e00024-19. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437269: https://doi.org/10.1128/mSphere.00024
Hansen GT (2021) Continuous evolution: perspective on the epidemiology of carbapenemase resistance among Enterobacterales and other Gram-Negative Bacteria. Infect Dis Ther 110:75–92. https://doi.org/10.1007/s40121-020-00395-2
Oueslati S, Nordmann P, Poirel L (2015) Heterogeneous hydrolytic features for OXA-48-like β-lactamases. J Antimicrob Chemother 70:1059–1063. https://doi.org/10.1093/jac/dku524
Article CAS PubMed Google Scholar
Al-Marzooq F, Ngeow YF, Tay ST (2015) Emergence of Klebsiella pneumoniae producing dual carbapenemases (NDM-1 and OXA-232) and 16S rRNA Methylase (armA) isolated from a Malaysian patient returning from India. Int J Antimicrob Agents 1:45:445–446. https://doi.org/10.1016/j.ijantimicag.2014.12.013
Al-Marzooq F, Ghazawi A, Allam M, Collyns T, Saleem A (2024) Novel variant of new Delhi Metallo-Beta-Lactamase (blaNDM-60) discovered in a clinical strain of Escherichia coli from the united Arab Emirates: an emerging challenge in antimicrobial resistance. Antibiotics 13:1158. https://doi.org/10.3390/antibiotics13121158
Article PubMed PubMed Central Google Scholar
Sommer J, Gerbracht KM, Krause FF, Wild F, Tietgen M, Riedel-Christ S et al (2021) OXA-484, an OXA-48-Type Carbapenem-Hydrolyzing class D β-Lactamase from Escherichia coli. Front Microbiol 12:660094. https://doi.org/10.3389/fmicb.2021.660094
Article PubMed PubMed Central Google Scholar
Kasap M, Torol S, Kolayli F, Dundar D, Vahaboglu H (2013) OXA-162, a novel variant of OXA-48 displays extended hydrolytic activity towards Imipenem, meropenem and doripenem. J Enzyme Inhib Med Chem 128:990–996. https://doi.org/10.3109/14756366.2012.702343
Al-Marzooq F, Ghazawi A, Tariq S, Daoud L, Collyns T (2022) Discerning the role of polymyxin B nonapeptide in restoring the antibacterial activity of Azithromycin against antibiotic-resistant Escherichia coli. Front Microbiol 13:998671. https://doi.org/10.3389/fmicb.2022.998671
Article PubMed PubMed Central Google Scholar
CLSI (2024) Performance Standards for Antimicrobial Susceptibility Testing. 34rd ed
Zhang S, Liao X, Ding T, Ahn J (2024) Role of β-Lactamase inhibitors as potentiators in antimicrobial chemotherapy targeting Gram-Negative Bacteria. Antibiotics 13:260. https://doi.org/10.3390/antibiotics13030260
Article CAS PubMed PubMed Central Google Scholar
Daoud L, Al-Marzooq F, Moubareck CA, Ghazawi A, Collyns T (2022) Elucidating the effect of iron acquisition systems in Klebsiella pneumoniae on susceptibility to the novel siderophore-cephalosporin Cefiderocol. PLOS ONE 29;17:e0277946. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277946: https://doi.org/10.1371/journal.pone.0277946
eucast Clinical breakpoints and dosing of antibiotics; https://www.eucast.org/clinical_breakpoints
Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinf 15;29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086
Alzayer M, Alkhulaifi MM, Alyami A, Aldosary M, Alageel A, Garaween G et al (2024) Genomic insights into the diversity, virulence, and antimicrobial resistance of group B Streptococcus clinical isolates from Saudi Arabia. Front Cell Infect Microbiol https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/https://doi.org/10.3389/fcimb.2024.1377993. 22;14
Article PubMed PubMed Central Google Scholar
Saini P, Bandsode V, Singh A, Mendem SK, Semmler T, Alam M et al (2024) Genomic insights into virulence, antimicrobial resistance, and adaptation acumen of Escherichia coli isolated from an urban environment. mBio 20;15:e03545-23. https://doi.org/10.1128/mbio.03545-23
Seemann T (2014) 15;30:2068–9 Prokka: rapid prokaryotic genome annotation. Bioinformatics https://doi.org/10.1093/bioinformatics/btu153
Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A et al (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 8:48:D517–D525. https://doi.org/10.1093/nar/gkz935
Liu B, Zheng D, Zhou S, Chen L, Yang J (2022) VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res 7;50:D912–D917. https://doi.org/10.1093/nar/gkab1107
Achtman M, Wain J, Weill F-X, Nair S, Zhou Z, Sangal V et al (2012) Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog 21. https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1002776https://doi.org/10.1371/journal.ppat.1002776.;8:e1002776
Tantoso E, Eisenhaber B, Kirsch M, Shitov V, Zhao Z, Eisenhaber F (2022) To kill or to be killed: pangenome analysis of Escherichia coli strains reveals a Tailocin specific for pandemic ST131. BMC Biol https://doi.org/10.1186/s12915-022-01347-7. 16;20:146
Article PubMed PubMed Central Google Scholar
Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM et al (2012) Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiol (Reading) 158:1005–1015. https://doi.org/10.1099/mic.0.055459-0
Blanc DS, Magalhães B, Koenig I, Senn L, Grandbastien B (2020) Comparison of whole genome (wg-) and core genome (cg-) MLST (BioNumericsTM) versus SNP variant calling for epidemiological investigation of Pseudomonas aeruginosa. Front Microbiol https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicbhttps://doi.org/10.3389/fmicb.2020.01729. 22;11
Article PubMed PubMed Central Google Scholar
Zhou Z, Alikhan N-F, Mohamed K, Fan Y, Group the AS, Achtman M et al (2020) The enterobase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res 1;30:138–152. https://genome.cshlp.org/content/30/1/138: https://doi.org/10.1101/gr.251678.119
Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O (2018) ClermonTyping: an easy-to-use and accurate in Silico method for Escherichia genus strain phylotyping. Microb Genom 19;4:e000192. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113867: https://doi.org/10.1099/mgen.0.000192
Clermont O, Christenson JK, Denamur E, Gordon DM (2013) The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 5:58–65. https://doi.org/10.1111/1758-2229.12019
Article CAS PubMed Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018 1;35:1547–1549. https://doi.org/10.1093/molbev/msy096
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 14:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Letunic I, Bork P (2024) Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res 5;52:W78–82. https://doi.org/10.1093/nar/gkae268
Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L et al (2017) Beta-lactamase database (BLDB)– structure and function. J Enzyme Inhib Med Chem 1;32:917–919. https://doi.org/10.1080/14756366.2017.1344235
Hendrickx A Subclass B1 metallo-beta-lactamase NDM-60 [Escherichia coli] - Protein - NCBI. [cited 2024 27]; https://www.ncbi.nlm.nih.gov/protein/WJL30768.1/
Zhou Z, Alikhan N-F, Sergeant MJ, Luhmann N, Vaz C, Francisco AP et al (2018) GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 1;28:1395–1404. https://genome.cshlp.org/content/28/9/1395: https://doi.org/10.1101/gr.232397.117
Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A (2018) MUMmer4: A fast and versatile genome alignment system. PLOS Comput Biology 26;14:e1005944. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005944: https://doi.org/10.1371/journal.pcbi.1005944
Sheneman L, Evans J, Foster JA Clearcut: a fast implementation of relaxed neighbor joining. Bioinf 2006 15;22:2823–2824. https://doi.org/10.1093/bioinformatics/btl478
Moser AI, Campos-Madueno EI, Sendi P, Perreten V, Keller PM, Ramette A et al (2021) Repatriation of a patient with COVID-19 contributed to the importation of an emerging carbapenemase producer. J Glob Antimicrob Resist 27:267–272. https://doi.org/10.1016/j.jgar.2021.10.012
Article CAS PubMed PubMed Central Google Scholar
Hamad M, Al-Marzooq F, Srinivasulu V, Omar HA, Sulaiman A, Zaher DM et al (2022) Antibacterial activity of small molecules which eradicate Methicillin-Resistant Staphylococcus aureus persisters. Front Microbiol 13:823394. https://doi.org/10.3389/fmicb.2022.823394
Comments (0)