Molecular Docking and Molecular Dynamics Simulation Insight of Amidase_2 Endolysin Domain as an Antifungal Enzyme

Marston HD, Dixon DM, Knisely JM et al (2016) Antimicrobial resistance. JAMA 316:1193–1204. https://doi.org/10.1001/JAMA.2016.11764

Article  CAS  PubMed  Google Scholar 

Gandra S, Joshi J, Trett A, Sankhil Lamkang A (2017) Scoping report on antimicrobial resistance in India. Cddep 14:4–6

Google Scholar 

Nucci M, Marr KA (2005) Emerging fungal diseases. Clin Infect Dis 41:521–526. https://doi.org/10.1086/432060

Article  PubMed  Google Scholar 

Hendrickson JA, Hu C, Aitken SL, Beyda N (2019) Antifungal resistance: a concerning trend for the present and future. Curr Infect Dis Rep 21:1–8. https://doi.org/10.1007/S11908-019-0702-9/METRICS

Article  Google Scholar 

Andrä J, Berninghausen O, Leippe M (2001) Cecropins, antibacterial peptides from insects and mammals, are potently fungicidal against Candida albicans. Med Microbiol Immunol 189:169–173. https://doi.org/10.1007/s430-001-8025-x

Article  PubMed  Google Scholar 

Sathoff AE, Velivelli S, Shah DM, Samac DA (2019) Plant defensin peptides have antifungal and antibacterial activity against human and plant pathogens. Phytopathology 109:402–408. https://doi.org/10.1094/PHYTO-09-18-0331-R

Article  CAS  PubMed  Google Scholar 

Goldman RC, Branstrom A (1999) Targeting cell wall synthesis and assembly in microbes: similarities and contrasts between bacteria and fungi. Curr Pharm Des 5:473–501. https://doi.org/10.2174/1381612805666230110212513

Article  CAS  PubMed  Google Scholar 

Nelson DC, Schmelcher M, Rodriguez-Rubio L, et al (2012) Endolysins as antimicrobials. Adv Virus Res, 83: 299-365. https://doi.org/10.1016/B978-0-12-394438-2.00007-4

Haddad Kashani H, Schmelcher M, Sabzalipoor H et al (2018) Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00071-17

Article  PubMed  Google Scholar 

Fischetti VA (2005) Bacteriophage lytic enzymes: Novel anti-infectives. Trends Microbiol 13:491–496. https://doi.org/10.1016/j.tim.2005.08.007

Article  CAS  PubMed  Google Scholar 

Gutiérrez D, Fernández L, Rodríguez A, García P (2018) Are phage lytic proteins the secret weapon to kill staphylococcus aureus? MBio 9:1–17. https://doi.org/10.1128/mBio.01923-17

Article  Google Scholar 

Behera M, Singh G, Vats A et al (2024) Expression and characterization of novel chimeric endolysin CHAPk-SH3bk against biofilm-forming methicillin-resistant Staphylococcus aureus. Int J Biol Macromol 254:127969. https://doi.org/10.1016/j.ijbiomac.2023.127969

Article  CAS  PubMed  Google Scholar 

Fenton M, Cooney JC, Ross RP et al (2011) In silico modeling of the staphylococcal bacteriophage-derived peptidase CHAPK. Bacteriophage 1:198. https://doi.org/10.4161/BACT.1.4.18245

Article  PubMed  PubMed Central  Google Scholar 

Keary R, Sanz-Gaitero M, van Raaij JM et al (2016) Characterization of a bacteriophage-derived murein peptidase for elimination of antibiotic-resistant Staphylococcus aureus. Curr Protein Pept Sci 17:183–190. https://doi.org/10.2174/1389203716666151102105515

Article  CAS  PubMed  Google Scholar 

Loessner MJ (2005) Bacteriophage endolysins–current state of research and applications. Curr Opin Microbiol 8:480–487. https://doi.org/10.1016/J.MIB.2005.06.002

Article  CAS  PubMed  Google Scholar 

Firczuk M, Bochtler M (2007) Folds and activities of peptidoglycan amidases. FEMS Microbiol Rev 31:676–691. https://doi.org/10.1111/J.1574-6976.2007.00084.X

Article  CAS  PubMed  Google Scholar 

Becker SC, Dong S, Baker JR et al (2009) LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells 294:52–60. https://doi.org/10.1111/j.1574-6968.2009.01541.x

Article  CAS  Google Scholar 

Costa SP, Dias NM, Melo LDR et al (2020). A novel flow cytometry assay based on bacteriophage-derived proteins for Staphylococcus detection in blood. https://doi.org/10.1038/s41598-020-62533-7

Article  Google Scholar 

Korndörfer IP, Danzer J, Schmelcher M et al (2006) The crystal structure of the bacteriophage PSA endolysin reveals a unique fold responsible for specific recognition of listeria cell walls. J Mol Biol 364:678–689. https://doi.org/10.1016/j.jmb.2006.08.069

Article  CAS  PubMed  Google Scholar 

Low LY, Yang C, Perego M et al (2005) Structure and lytic activity of a Bacillus anthracis prophage endolysin. J Biol Chem 280:35433–35439. https://doi.org/10.1074/jbc.M502723200

Article  CAS  PubMed  Google Scholar 

Horgan M, O’Flynn G, Garry J et al (2009) Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci. Appl Environ Microbiol 75:872–874. https://doi.org/10.1128/AEM.01831-08

Article  CAS  PubMed  Google Scholar 

Gu J, Feng Y, Feng X et al (2014) Structural and biochemical characterization reveals LysGH15 as an unprecedented “EF-Hand-Like” calcium-binding phage lysin. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004109

Article  PubMed  PubMed Central  Google Scholar 

Lee C, Kim J, Son B, Ryu S (2021) Development of advanced chimeric endolysin to control multidrug-resistant Staphylococcus aureus through domain shuffling. ACS Infect Dis 7:2081–2092. https://doi.org/10.1021/acsinfecdis.0c00812

Article  CAS  PubMed  Google Scholar 

Tobias Abedon S, McAuliffe O, Blázquez B, et al (2016) PL3 amidase, a tailor-made lysin constructed by domain shuffling with potent killing activity against pneumococci and related species. https://doi.org/10.3389/fmicb.2016.01156

Son B, Kong M, Ryu S (2018) The auxiliary role of the amidase domain in cell wall binding and exolytic activity of staphylococcal phage endolysins. Viruses 10:284. https://doi.org/10.3390/V10060284

Article  PubMed  PubMed Central  Google Scholar 

Miri M, Yazdianpour S, Abolmaali S, Astaneh SDA (2022) Exogenous production of N-acetylmuramyl-L alanine amidase (LysM2) from siphoviridae phage affecting anti-gram-negative bacteria: evaluation of its structure and function. Avicenna J Med Biotechnol 14:46–53. https://doi.org/10.18502/ajmb.v14i1.8169

Article  PubMed  PubMed Central  Google Scholar 

Büttner FM, Zoll S, Nega M et al (2014) Structure-function analysis of Staphylococcus aureus amidase reveals the determinants of peptidoglycan recognition and cleavage. J Biol Chem 289:11083–11094. https://doi.org/10.1074/jbc.M114.557306

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park SC, Kim MH, Hossain MA et al (2008) Amphipathic α-helical peptide, HP (2–20), and its analogues derived from Helicobacter pylori: pore formation mechanism in various lipid compositions. Biochim Biophys Acta – Biomembr 1778:229–241. https://doi.org/10.1016/j.bbamem.2007.09.020

Article  CAS  Google Scholar 

Vouldoukis I, Shai Y, Nicolas P, Mor A (1996) Broad spectrum antibiotic activity of skin-PYY. FEBS Lett 380:237–240. https://doi.org/10.1016/0014-5793(96)00050-6

Article  CAS  PubMed  Google Scholar 

Notomista E, Falanga A, Fusco S et al (2015) The identification of a novel Sulfolobus islandicus CAMP-like peptide points to archaeal microorganisms as cell factories for the production of antimicrobial molecules. Microb Cell Fact 14:1–11. https://doi.org/10.1186/s12934-015-0302-9

Article  CAS  Google Scholar 

Zhang X, Guo X, Wu C et al (2020) Isolation, heterologous expression, and purification of a novel antifungal protein from Bacillus subtilis strain Z-14. Microb Cell Fact 19:1–10. https://doi.org/10.1186/s12934-020-01475-1

Article  CAS  Google Scholar 

Matilla MA, Leeper FJ, Salmond GPC (2015) Biosynthesis of the antifungal haterumalide, oocydin A, in Serratia, and its regulation by quorum sensing, RpoS and Hfq. Environ Microbiol 17:2993–3008. https://doi.org/10.1111/1462-2920.12839

Article  CAS 

Comments (0)

No login
gif