Marston HD, Dixon DM, Knisely JM et al (2016) Antimicrobial resistance. JAMA 316:1193–1204. https://doi.org/10.1001/JAMA.2016.11764
Article CAS PubMed Google Scholar
Gandra S, Joshi J, Trett A, Sankhil Lamkang A (2017) Scoping report on antimicrobial resistance in India. Cddep 14:4–6
Nucci M, Marr KA (2005) Emerging fungal diseases. Clin Infect Dis 41:521–526. https://doi.org/10.1086/432060
Hendrickson JA, Hu C, Aitken SL, Beyda N (2019) Antifungal resistance: a concerning trend for the present and future. Curr Infect Dis Rep 21:1–8. https://doi.org/10.1007/S11908-019-0702-9/METRICS
Andrä J, Berninghausen O, Leippe M (2001) Cecropins, antibacterial peptides from insects and mammals, are potently fungicidal against Candida albicans. Med Microbiol Immunol 189:169–173. https://doi.org/10.1007/s430-001-8025-x
Sathoff AE, Velivelli S, Shah DM, Samac DA (2019) Plant defensin peptides have antifungal and antibacterial activity against human and plant pathogens. Phytopathology 109:402–408. https://doi.org/10.1094/PHYTO-09-18-0331-R
Article CAS PubMed Google Scholar
Goldman RC, Branstrom A (1999) Targeting cell wall synthesis and assembly in microbes: similarities and contrasts between bacteria and fungi. Curr Pharm Des 5:473–501. https://doi.org/10.2174/1381612805666230110212513
Article CAS PubMed Google Scholar
Nelson DC, Schmelcher M, Rodriguez-Rubio L, et al (2012) Endolysins as antimicrobials. Adv Virus Res, 83: 299-365. https://doi.org/10.1016/B978-0-12-394438-2.00007-4
Haddad Kashani H, Schmelcher M, Sabzalipoor H et al (2018) Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00071-17
Fischetti VA (2005) Bacteriophage lytic enzymes: Novel anti-infectives. Trends Microbiol 13:491–496. https://doi.org/10.1016/j.tim.2005.08.007
Article CAS PubMed Google Scholar
Gutiérrez D, Fernández L, Rodríguez A, García P (2018) Are phage lytic proteins the secret weapon to kill staphylococcus aureus? MBio 9:1–17. https://doi.org/10.1128/mBio.01923-17
Behera M, Singh G, Vats A et al (2024) Expression and characterization of novel chimeric endolysin CHAPk-SH3bk against biofilm-forming methicillin-resistant Staphylococcus aureus. Int J Biol Macromol 254:127969. https://doi.org/10.1016/j.ijbiomac.2023.127969
Article CAS PubMed Google Scholar
Fenton M, Cooney JC, Ross RP et al (2011) In silico modeling of the staphylococcal bacteriophage-derived peptidase CHAPK. Bacteriophage 1:198. https://doi.org/10.4161/BACT.1.4.18245
Article PubMed PubMed Central Google Scholar
Keary R, Sanz-Gaitero M, van Raaij JM et al (2016) Characterization of a bacteriophage-derived murein peptidase for elimination of antibiotic-resistant Staphylococcus aureus. Curr Protein Pept Sci 17:183–190. https://doi.org/10.2174/1389203716666151102105515
Article CAS PubMed Google Scholar
Loessner MJ (2005) Bacteriophage endolysins–current state of research and applications. Curr Opin Microbiol 8:480–487. https://doi.org/10.1016/J.MIB.2005.06.002
Article CAS PubMed Google Scholar
Firczuk M, Bochtler M (2007) Folds and activities of peptidoglycan amidases. FEMS Microbiol Rev 31:676–691. https://doi.org/10.1111/J.1574-6976.2007.00084.X
Article CAS PubMed Google Scholar
Becker SC, Dong S, Baker JR et al (2009) LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells 294:52–60. https://doi.org/10.1111/j.1574-6968.2009.01541.x
Costa SP, Dias NM, Melo LDR et al (2020). A novel flow cytometry assay based on bacteriophage-derived proteins for Staphylococcus detection in blood. https://doi.org/10.1038/s41598-020-62533-7
Korndörfer IP, Danzer J, Schmelcher M et al (2006) The crystal structure of the bacteriophage PSA endolysin reveals a unique fold responsible for specific recognition of listeria cell walls. J Mol Biol 364:678–689. https://doi.org/10.1016/j.jmb.2006.08.069
Article CAS PubMed Google Scholar
Low LY, Yang C, Perego M et al (2005) Structure and lytic activity of a Bacillus anthracis prophage endolysin. J Biol Chem 280:35433–35439. https://doi.org/10.1074/jbc.M502723200
Article CAS PubMed Google Scholar
Horgan M, O’Flynn G, Garry J et al (2009) Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci. Appl Environ Microbiol 75:872–874. https://doi.org/10.1128/AEM.01831-08
Article CAS PubMed Google Scholar
Gu J, Feng Y, Feng X et al (2014) Structural and biochemical characterization reveals LysGH15 as an unprecedented “EF-Hand-Like” calcium-binding phage lysin. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004109
Article PubMed PubMed Central Google Scholar
Lee C, Kim J, Son B, Ryu S (2021) Development of advanced chimeric endolysin to control multidrug-resistant Staphylococcus aureus through domain shuffling. ACS Infect Dis 7:2081–2092. https://doi.org/10.1021/acsinfecdis.0c00812
Article CAS PubMed Google Scholar
Tobias Abedon S, McAuliffe O, Blázquez B, et al (2016) PL3 amidase, a tailor-made lysin constructed by domain shuffling with potent killing activity against pneumococci and related species. https://doi.org/10.3389/fmicb.2016.01156
Son B, Kong M, Ryu S (2018) The auxiliary role of the amidase domain in cell wall binding and exolytic activity of staphylococcal phage endolysins. Viruses 10:284. https://doi.org/10.3390/V10060284
Article PubMed PubMed Central Google Scholar
Miri M, Yazdianpour S, Abolmaali S, Astaneh SDA (2022) Exogenous production of N-acetylmuramyl-L alanine amidase (LysM2) from siphoviridae phage affecting anti-gram-negative bacteria: evaluation of its structure and function. Avicenna J Med Biotechnol 14:46–53. https://doi.org/10.18502/ajmb.v14i1.8169
Article PubMed PubMed Central Google Scholar
Büttner FM, Zoll S, Nega M et al (2014) Structure-function analysis of Staphylococcus aureus amidase reveals the determinants of peptidoglycan recognition and cleavage. J Biol Chem 289:11083–11094. https://doi.org/10.1074/jbc.M114.557306
Article CAS PubMed PubMed Central Google Scholar
Park SC, Kim MH, Hossain MA et al (2008) Amphipathic α-helical peptide, HP (2–20), and its analogues derived from Helicobacter pylori: pore formation mechanism in various lipid compositions. Biochim Biophys Acta – Biomembr 1778:229–241. https://doi.org/10.1016/j.bbamem.2007.09.020
Vouldoukis I, Shai Y, Nicolas P, Mor A (1996) Broad spectrum antibiotic activity of skin-PYY. FEBS Lett 380:237–240. https://doi.org/10.1016/0014-5793(96)00050-6
Article CAS PubMed Google Scholar
Notomista E, Falanga A, Fusco S et al (2015) The identification of a novel Sulfolobus islandicus CAMP-like peptide points to archaeal microorganisms as cell factories for the production of antimicrobial molecules. Microb Cell Fact 14:1–11. https://doi.org/10.1186/s12934-015-0302-9
Zhang X, Guo X, Wu C et al (2020) Isolation, heterologous expression, and purification of a novel antifungal protein from Bacillus subtilis strain Z-14. Microb Cell Fact 19:1–10. https://doi.org/10.1186/s12934-020-01475-1
Matilla MA, Leeper FJ, Salmond GPC (2015) Biosynthesis of the antifungal haterumalide, oocydin A, in Serratia, and its regulation by quorum sensing, RpoS and Hfq. Environ Microbiol 17:2993–3008. https://doi.org/10.1111/1462-2920.12839
Comments (0)