Joudeh, N., & Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. Journal of Nanobiotechnology, 20(1), 1–29. https://doi.org/10.1186/s12951-022-01477-8
Adya, A. K., & Canetta, E. (2013). Nanotechnology and its applications to animal biotechnology. Animal biotechnology: Models in discovery and translation (pp. 247–263). Academic Press. https://doi.org/10.1016/B978-0-12-416002-6.00014-6
Rajput, V. D., et al. (2021). Nano-enabled products: Challenges and opportunities for sustainable agriculture. Plants. https://doi.org/10.3390/PLANTS10122727
Willems, N. I. T. (2005). Roadmap report on nanoparticles. Methodology, (November), 1–57.
Singh, S., Maurya, P., & Soni, K. (2023). Nanoparticles: Their classification, types and properties. 9(8), 159–166.
Grasso, G., Zane, D., & Dragone, R. (2020). Microbial nanotechnology: Challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials. https://doi.org/10.3390/nano10010011
Heiligtag, F. J., & Niederberger, M. (2013). The fascinating world of nanoparticle research. Materials Today, 16(7–8), 262–271. https://doi.org/10.1016/j.mattod.2013.07.004
Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9(1), 1050–1074. https://doi.org/10.3762/bjnano.9.98
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/J.ARABJC.2017.05.011
Narayanan, R., & El-Sayed, M. A. (2004). Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Letters, 4(7), 1343–1348. https://doi.org/10.1021/nl0495256
Moura, D., et al. (2017). Development of a bioactive glass-polymer composite for wound healing applications. Materials Science and Engineering C, 76, 224–232. https://doi.org/10.1016/j.msec.2017.03.037
Banerjee, K., Das, S., Choudhury, P., Ghosh, S., Baral, R., & Choudhuri, S. K. (2017). A novel approach of synthesizing and evaluating the anticancer potential of silver oxide nanoparticles in vitro. Chemotherapy, 62(5), 279–289. https://doi.org/10.1159/000453446
Venkatesh, N. (2018). Metallic nanoparticle: A review. Biomedical Journal of Scientific & Technical Research, 4(2), 3765–3775. https://doi.org/10.26717/bjstr.2018.04.0001011
Yaqoob, A. A., et al. (2020). Recent advances in metal decorated nanomaterials and their various biological applications: A review. Frontiers in Chemistry, 8(May), 1–23. https://doi.org/10.3389/fchem.2020.00341
Ahmad, R., Mohsin, M., Ahmad, T., & Sardar, M. (2015). Alpha amylase assisted synthesis of TiO2 nanoparticles: Structural characterization and application as antibacterial agents. Journal of Hazardous Materials, 283, 171–177. https://doi.org/10.1016/j.jhazmat.2014.08.073
Khatoon, N., Ahmad, R., & Sardar, M. (2015). Robust and fluorescent silver nanoparticles using Artemisia annua: Biosynthesis, characterization and antibacterial activity. Biochemical Engineering Journal, 102, 91–97. https://doi.org/10.1016/j.bej.2015.02.019
Mazumder, J. A., Ahmad, R., & Sardar, M. (2016). Reusable magnetic nanobiocatalyst for synthesis of silver and gold nanoparticles. International Journal of Biological Macromolecules, 93, 66–74. https://doi.org/10.1016/j.ijbiomac.2016.08.073
Abdulla, N. K., et al. (2021). Silver based hybrid nanocomposite: A novel antibacterial material for water cleansing. Journal of Cleaner Production, 284, 124746. https://doi.org/10.1016/j.jclepro.2020.124746
Fayaz, A. M., Girilal, M., Rahman, M., Venkatesan, R., & Kalaichelvan, P. T. (2011). Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochemistry, 46(10), 1958–1962. https://doi.org/10.1016/j.procbio.2011.07.003
Kang, S. H., Bozhilov, K. N., Myung, N. V., Mulchandani, A., & Chen, W. (2008). Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angewandte Chemie - International Edition, 47(28), 5186–5189. https://doi.org/10.1002/anie.200705806
Chopra, H., Gandhi, S., Gautam, R. K., & Kamal, M. A. (2021). Bacterial nanocellulose based wound dressings: Current and future prospects. Current Pharmaceutical Design, 28(7), 570–580. https://doi.org/10.2174/1381612827666211021162828
Chopra, H., et al. (2021). Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules, 26(16), 1–28. https://doi.org/10.3390/molecules26164998
Bhattacharya, T., et al. (2022). Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials, 15(3), 1–32. https://doi.org/10.3390/ma15030804
Article MathSciNet MATH Google Scholar
Nishimura, S. (2001). Book reviews. New York, 8(2), 293–300.
El Shafey, A. M. (2020). Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing and Synthesis, 9(1), 304–339. https://doi.org/10.1515/gps-2020-0031
Cuong, H. N., et al. (2022). New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environmental Research, 203(May 2021), 111858. https://doi.org/10.1016/j.envres.2021.111858
Ghosh, S., Ahmad, R., Zeyaullah, M., & Khare, S. K. (2021). Microbial nano-factories: Synthesis and biomedical applications. Frontiers in Chemistry. https://doi.org/10.3389/fchem.2021.626834
Moradali, M. F., & Rehm, B. H. A. (2020). Bacterial biopolymers: From pathogenesis to advanced materials. Nature Reviews Microbiology, 18(4), 195–210. https://doi.org/10.1038/s41579-019-0313-3
Fariq, A., Khan, T., & Yasmin, A. (2017). Microbial synthesis of nanoparticles and their potential applications in biomedicine. Journal of Applied Biomedicine, 15(4), 241–248. https://doi.org/10.1016/j.jab.2017.03.004
Salem, S. S., & Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research, 199(1), 344–370. https://doi.org/10.1007/s12011-020-02138-3
Luo, C. H., Shanmugam, V., & Yeh, C. S. (2015). Nanoparticle biosynthesis using unicellular and subcellular supports. NPG Asia Materials. https://doi.org/10.1038/am.2015.90
Mohd Yusof, H., Mohamad, R., Zaidan, U. H., & Abdul Rahman, N. A. (2019). Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. Journal of Animal Science and Biotechnology. https://doi.org/10.1186/s40104-019-0368-z
Dereeper, A., et al. (2008). Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36(Web Server issue), 465–469. https://doi.org/10.1093/nar/gkn180
Choi, Y., & Lee, S. Y. (2020). Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages. Nature Reviews Chemistry, 4(12), 638–656. https://doi.org/10.1038/s41570-020-00221-w
Gholami-Shabani, M., et al. (2015). Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: A green eco-friendly approach. Process Biochemistry, 50(7), 1076–1085. https://doi.org/10.1016/j.procbio.2015.04.004
Choi, Y., Park, T. J., Lee, D. C., & Lee, S. Y. (2018). Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials. Proceedings of the National academy of Sciences of the United States of America, 115(23), 5944–5949. https://doi.org/10.1073/pnas.1804543115
Comments (0)