Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education research? Educational Researcher, 41(1), 16–25.
Bakshi, A., Webber, A. T., Patrick, L. E., Wischusen, W., & Thrash, C. (2019). The CURE for Cultivating Fastidious Microbes. Journal of Microbiology & Biology Education, 20(1). https://doi.org/10.1128/jmbe.v20i1.1635
Baumer, B. (2015). A data science course for undergraduates: Thinking with data. The American Statistician, 69(4), 334–342.
Börner, K., Bueckle, A., & Ginda, M. (2019). Data visualization literacy: Definitions, conceptual frameworks, exercises, and assessments. Proceedings of the National Academy of Sciences, 116(6), 1857–1864.
Chalmers, R. P., & Adkins, M. C. (2020). Writing effective and reliable Monte Carlo simulations with the SimDesign package. The Quantitative Methods for Psychology, 16(4), 248–280.
Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative Sociology, 13(1), 3–21.
Cruz, A., Selby, S., & Durham, W. (2018). Place-based education for environmental behavior: A ‘funds of knowledge’ and social capital approach. Environmental Education Research, 24(5), 627–647.
Desimone, L., & Le Floch, K. (2004). Are we asking the right questions? Using cognitive interviews to improve surveys in education research. Educational Evaluation and Policy Analysis, 26(1), 1–22.
Dole, J. A., & Sinatra, G. M. (1998). Reconceptualizing change in the cognitive construction of knowledge. Educational Psychologist, 33(2–3), 109–128.
Eccles, J., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L., & Midgley, C. (1983). Expectancies, values, and academic behaviors. In J. T. Spence (Ed.), Achievement and achievement motives: Psychological and sociological approaches (pp. 75–146). W. H. Freeman.
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160.
Fredricks, J. A., Filsecker, M., & Lawson, M. A. (2016). Student engagement, context, and adjustment: Addressing definitional, measurement, and methodological issues. Learning and Instruction, 43, 1–4.
Fry, R., Kennedy, B., & Funk, C. (2021). STEM jobs see uneven progress in increasing gender, racial and ethnic diversity. Pew Research Center Science & Society.
Gonzalez, N., Moll, L. C., Tenery, M. F., Rivera, A., Rendon, P., Gonzales, R., & Amanti, C. (1995). Funds of knowledge for teaching in Latino households. Urban Education, 29(4), 443–470.
Gottfried, A. E., Marcoulides, G. A., Gottfried, A. W., & Oliver, P. H. (2013). Longitudinal pathways from math intrinsic motivation and achievement to math course accomplishments and educational attainment. Journal of Research on Educational Effectiveness, 6(1), 68–92. https://doi.org/10.1080/19345747.2012.698376
Greene, B. A. (2015). Measuring cognitive engagement with self-report scales: Reflections from over 20 years of research. Educational Psychologist, 50(1), 14–30.
Harackiewicz, J. M., Canning, E. A., Tibbetts, Y., Priniski, S. J., & Hyde, J. S. (2016). Closing achievement gaps with a utility-value intervention: Disentangling race and social class. Journal of Personality and Social Psychology, 111(5), 745–765.
Hoadley, C., & Campos, F. C. (2022). Design-based research: What it is and why it matters to studying online learning. Educational Psychologist, 57(3), 207–220.
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.
Hulleman, C. S., Godes, O., Hendricks, B. L., & Harackiewicz, J. M. (2010). Enhancing interest and performance with a utility value intervention. Journal of Educational Psychology, 102(4), 880–895.
Hulleman, C. S., & Harackiewicz, J. M. (2021). The utility-value intervention. In G. M. Walton & A. J. Crum (Eds.), Handbook of wise interventions: How social psychology can help people change (pp. 100–125). The Guilford Press.
Hulleman, C. S., Kosovich, J. J., Barron, K. E., & Daniel, D. B. (2017). Making connections: Replicating and extending the utility value intervention in the classroom. Journal of Educational Psychology, 109(3), 387–404.
Hulleman, C. S., Wormington, S. V., Tibbetts, C. Y., & Philipoom, M. (2018). A meta-analytic synthesis of utility-value interventions in education. Paper presented at the bi-annual meeting of the International Conference on Motivation. Aarhus, Denmark.
Hurley, A., Chevrette, M. G., Acharya, D. D., Lozano, G. L., Garavito, M., Heinritz, J., & Handelsman, J. (2021). Tiny earth: A big idea for STEM education and antibiotic discovery. MBio, 12(1), 10–1128.
Kosovich, J. J., Hulleman, C. S., Barron, K. E., & Getty, S. (2015). A practical measure of student motivation: Establishing validity evidence for the expectancy-value-cost scale in middle school. The Journal of Early Adolescence, 35(5–6), 790–816.
Lombardi, D., Nussbaum, E. M., & Sinatra, G. M. (2016). Plausibility judgments in conceptual change and epistemic cognition. Educational Psychologist, 51(1), 35–56.
Long, J. S., & Ervin, L. H. (2000). Using heteroscedasticity consistent standard errors in the linear regression model. The American Statistician, 54(3), 217–224.
National Science Foundation. (2015). Science and engineering degrees, by race/ethnicity of recipients: 2002–12. VA: Arlington.
Pekrun, R., Vogl, E., Muis, K. R., & Sinatra, G. M. (2017). Measuring emotions during epistemic activities: The Epistemically-Related Emotion Scales. Cognition and Emotion, 31(6), 1268–1276.
Rosenzweig, E. Q., Wigfield, A., & Hulleman, C. S. (2020). More useful or not so bad? Examining the effects of utility value and cost reduction interventions in college physics. Journal of Educational Psychology, 112(1), 166–182.
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1–36.
Schiefele, U. (2009). Situational and individual interest. In K. R. Wenzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 197–222). Routledge/Taylor & Francis Group.
Schwartz, D. L., & Heiser, J. (2006). Spatial representations and imagery in learning. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 283–298). Cambridge University Press.
Seyranian, V., Thacker, I., Madva, A., Abramzon, N., & Beardsley, P. (2023). A Utility Value Intervention to support undergraduate student interest, engagement, and achievement in calculus and calculus-based physics. In T. Lamberg & D. Moss (Eds.), Proceedings of the forty-fifth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 464–473). University of Nevada, Reno.
Tanner, K., & Allen, D. (2005). Approaches to biology teaching and learning: Understanding the wrong answers—teaching toward conceptual change. Cell Biology Education, 4(2), 112–117.
Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2013). Using multivariate statistics (Vol. 6, pp. 497–516). Pearson.
Thacker. (2023). Climate change by the numbers: Leveraging mathematical skills for science learning online. Learning & Instruction, 86, 101782. https://doi.org/10.1016/j.learninstruc.2023.101782
Thacker, I. (2024). Supporting secondary students’ climate change learning and motivation using novel data and data visualizations. Contemporary Educational Psychology, 78, 102285. https://doi.org/10.1016/j.cedpsych.2024.102285
Thacker & Sinatra. (2022). Supporting climate change understanding with novel data, estimation instruction, and epistemic prompts. Journal of Educational Psychology, 114(5), 910–927. https://doi.org/10.1037/edu0000729
Vu, T., et al. (2022). Motivation-Achievement Cycles in Learning: A Literature Review and Research Agenda. Educational Psychology Review, 34(1), 39–71. https://doi.org/10.1007/s10648-021-09616-7
Wigfield, A., Rosenzweig, E. Q., & Eccles, J. S. (2017). Achievement values. In A. J. Elliot, C. S. Dweck, & D. S. Yeager (Eds.), Handbook of competence and motivation (2nd ed., pp. 116–134). Guilford Press.
Wilson-Lopez, A., Mejia, J. A., Hasbún, I. M., & Kasun, G. S. (2016). Latina/o adolescents’ funds of knowledge related to engineering. Journal of Engineering Education, 105(2), 278–311.
Zeileis, A., Köll, S., & Graham, N. (2020). Various versatile variances: An object-oriented implementation of clustered covariances in R. Journal of Statistical Software, 95(1), 1–36. https://doi.org/10.18637/jss.v095.i01
Comments (0)