Multifunctional polymeric nanofibrous scaffolds enriched with azilsartan medoxomil for enhanced wound healing

Jiang F, et al. Extraction and characterization of chitosan from eupolyphaga sinensis Walker and its application in the preparation of electrospinning nanofiber membranes. Colloids Surf, B. 2023;222: 113030. https://doi.org/10.1016/j.colsurfb.2022.113030.

Article  CAS  Google Scholar 

Samadian H, et al. In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. Artif Cells Nanomed Biotechnol. 2018;46(sup1):964–74. https://doi.org/10.1080/21691401.2018.1439842.

Article  CAS  PubMed  Google Scholar 

Alka, et al. Polymeric gel scaffolds and biomimetic environments for wound healing. Curr Pharm Des. 2023;29(40):3221–39. https://doi.org/10.2174/1381612829666230816100631.

Article  CAS  PubMed  Google Scholar 

Ritsu M, et al. Critical role of tumor necrosis factor-α in the early process of wound healing in skin. J Dermatol Dermatol Surg. 2017;21(1):14–9. https://doi.org/10.1016/j.jdds.2016.09.001.

Article  Google Scholar 

Zhou Q, et al. The potential roles of JAK/STAT signaling in the progression of osteoarthritis. Front Endocrinol. 2022;13:1069057. https://doi.org/10.3389/fendo.2022.1069057.

Article  Google Scholar 

Alaaeldin R, et al. Inhibition of NF-kB/IL-6/JAK2/STAT3 pathway and epithelial-mesenchymal transition in breast cancer cells by azilsartan. Molecules. 2022;27(22):7825. https://doi.org/10.3390/molecules27227825.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ilomuanya MO, et al. Polylactic acid-based electrospun fiber and hyaluronic acid-valsartan hydrogel scaffold for chronic wound healing. Beni-Suef Univ J Basic Appl Sci. 2020;9:1–13. https://doi.org/10.1186/s43088-020-00057-9.

Article  Google Scholar 

Zaeri S, Karami F, Assadi M. Propranolol-loaded electrospun nanofibrous wound dressing: From fabrication and characterization to preliminary wound healing evaluation. Iran J Basic Med Sci. 2021;24(9):1279–91. https://doi.org/10.22038/ijbms.2021.57770.12857.

Article  PubMed  PubMed Central  Google Scholar 

Akershoek JJ, et al. The presence of tissue renin-angiotensin system components in human burn wounds and scars. Burns Open. 2018;2(3):114–21. https://doi.org/10.1016/j.burnso.2018.06.001.

Article  Google Scholar 

Bedair H, et al. Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am J Sports Med. 2008;36(8):1548–54. https://doi.org/10.1177/0363546508315470.

Article  PubMed  Google Scholar 

Bernasconi R, Nystrom A. Balance and circumstance: The renin angiotensin system in wound healing and fibrosis. Cell Signal. 2018;51:34–46. https://doi.org/10.1016/j.cellsig.2018.07.011.

Article  CAS  PubMed  Google Scholar 

Chen J, et al. Targeting matrix metalloproteases in diabetic wound healing. Front Immunol. 2023;14:1089001. https://doi.org/10.3389/fimmu.2023.1089001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Araujo AA, et al. Azilsartan reduced TNF-α and IL-1β levels, increased IL-10 levels and upregulated VEGF, FGF, KGF, and TGF-α in an oral mucositis model. PLoS ONE. 2015;10(2): e0116799. https://doi.org/10.1371/journal.pone.0116799.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hedayatyanfard K, et al. Potential use of angiotensin receptor blockers in skin pathologies. Iran J Basic Med Sci. 2023;26(7):732–7. https://doi.org/10.22038/ijbms.2023.66563.14606.

Article  PubMed  PubMed Central  Google Scholar 

Huang Y, et al. Intradermal delivery of an angiotensin II receptor blocker using a personalized microneedle patch for treatment of hypertrophic scars. Biomater Sci. 2023;11(2):583–95. https://doi.org/10.1039/D2BM01631A.

Article  CAS  PubMed  Google Scholar 

Yahata Y, et al. A novel function of angiotensin II in skin wound healing: Induction of fibroblast and keratinocyte migration by angiotensin II via heparin-binding epidermal growth factor (EGF)-like growth factor-mediated EGF receptor transactivation. J Biol Chem. 2006;281(19):13209–16. https://doi.org/10.1074/jbc.M509771200.

Article  CAS  PubMed  Google Scholar 

Takeda H, et al. Effects of angiotensin II receptor signaling during skin wound healing. Am J Pathol. 2004;165(5):1653–62. https://doi.org/10.1016/S0002-9440(10)63422-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong Q, et al. Azilsartan suppressed LPS-induced inflammation in U937 macrophages through suppressing oxidative stress and inhibiting the TLR2/MyD88 signal pathway. ACS Omega. 2021;6(1):113–8. https://doi.org/10.1021/acsomega.0c03655.

Article  CAS  PubMed  Google Scholar 

Kumar G, et al. Central composite design implemented azilsartan medoxomil loaded nanoemulsion to improve its aqueous solubility and intestinal permeability: In vitro and ex vivo evaluation. Pharmaceuticals. 2022;15(11):1343. https://doi.org/10.3390/ph15111343.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamdan S, et al. Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent Sci. 2017;3(3):163–75. https://doi.org/10.1021/acscentsci.6b00371.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desai N, et al. Chitosan: A potential biopolymer in drug delivery and biomedical applications. Pharmaceutics. 2023;15(4):1313. https://doi.org/10.3390/pharmaceutics15041313.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jadbabaei S, et al. Preparation and characterization of sodium alginate–PVA polymeric scaffolds by electrospinning method for skin tissue engineering applications. RSC Adv. 2021;11(49):30674–88. https://doi.org/10.1039/D1RA04176B.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adeli B, Gharehaghaji AA, Jeddi AAA. A feasibility study on production and optimization of PVDF/PU polyblend nanofiber layers using expert design analysis. Iran Polym J. 2021;30(6):535–45. https://doi.org/10.1007/s13726-021-00910-3.

Article  Google Scholar 

Thien DVH. Electrospun chitosan/PVA nanofibers for drug delivery   Vietnam J Sci Technol. 2018;54:185–1. https://doi.org/10.15625/2525-2518/54/4B/12040.

Article  Google Scholar 

Rajan S, et al. Preparation and evaluation of ketoprofen film forming gel. Euro J Pharm Med Res. 2022;9(9):212–9.

Google Scholar 

Al-Suwayeh SA, et al. Evaluation of skin permeation and analgesic activity effects of carbopol lornoxicam topical gels containing penetration enhancer. Sci World J. 2014;2014: 127495. https://doi.org/10.1155/2014/127495.

Article  CAS  Google Scholar 

Sa’adon S, et al. Electrospun nanofiber and cryogel of polyvinyl alcohol transdermal patch containing diclofenac sodium: preparation, characterization and in vitro release studies. Pharmaceutics. 2021;13(11):1900. https://doi.org/10.3390/pharmaceutics13111900.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lodhi M, et al. Formulation and evaluation of buccal film of Ivabradine hydrochloride for the treatment of stable angina pectoris. Int J Pharm Investig. 2013;3(1):47. https://doi.org/10.4103/2230-973X.108963.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Satishbabu B, Srinivasan B. Preparation and evaluation of buccoadhesive films of atenolol. Indian J Pharm Sci. 2008;70(2):175. https://doi.org/10.4103/0250-474X.41451.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pamlenyi K, et al. Stability, permeability and cytotoxicity of buccal films in allergy treatment. Pharmaceut

Comments (0)

No login
gif