Jiang F, et al. Extraction and characterization of chitosan from eupolyphaga sinensis Walker and its application in the preparation of electrospinning nanofiber membranes. Colloids Surf, B. 2023;222: 113030. https://doi.org/10.1016/j.colsurfb.2022.113030.
Samadian H, et al. In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. Artif Cells Nanomed Biotechnol. 2018;46(sup1):964–74. https://doi.org/10.1080/21691401.2018.1439842.
Article CAS PubMed Google Scholar
Alka, et al. Polymeric gel scaffolds and biomimetic environments for wound healing. Curr Pharm Des. 2023;29(40):3221–39. https://doi.org/10.2174/1381612829666230816100631.
Article CAS PubMed Google Scholar
Ritsu M, et al. Critical role of tumor necrosis factor-α in the early process of wound healing in skin. J Dermatol Dermatol Surg. 2017;21(1):14–9. https://doi.org/10.1016/j.jdds.2016.09.001.
Zhou Q, et al. The potential roles of JAK/STAT signaling in the progression of osteoarthritis. Front Endocrinol. 2022;13:1069057. https://doi.org/10.3389/fendo.2022.1069057.
Alaaeldin R, et al. Inhibition of NF-kB/IL-6/JAK2/STAT3 pathway and epithelial-mesenchymal transition in breast cancer cells by azilsartan. Molecules. 2022;27(22):7825. https://doi.org/10.3390/molecules27227825.
Article CAS PubMed PubMed Central Google Scholar
Ilomuanya MO, et al. Polylactic acid-based electrospun fiber and hyaluronic acid-valsartan hydrogel scaffold for chronic wound healing. Beni-Suef Univ J Basic Appl Sci. 2020;9:1–13. https://doi.org/10.1186/s43088-020-00057-9.
Zaeri S, Karami F, Assadi M. Propranolol-loaded electrospun nanofibrous wound dressing: From fabrication and characterization to preliminary wound healing evaluation. Iran J Basic Med Sci. 2021;24(9):1279–91. https://doi.org/10.22038/ijbms.2021.57770.12857.
Article PubMed PubMed Central Google Scholar
Akershoek JJ, et al. The presence of tissue renin-angiotensin system components in human burn wounds and scars. Burns Open. 2018;2(3):114–21. https://doi.org/10.1016/j.burnso.2018.06.001.
Bedair H, et al. Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am J Sports Med. 2008;36(8):1548–54. https://doi.org/10.1177/0363546508315470.
Bernasconi R, Nystrom A. Balance and circumstance: The renin angiotensin system in wound healing and fibrosis. Cell Signal. 2018;51:34–46. https://doi.org/10.1016/j.cellsig.2018.07.011.
Article CAS PubMed Google Scholar
Chen J, et al. Targeting matrix metalloproteases in diabetic wound healing. Front Immunol. 2023;14:1089001. https://doi.org/10.3389/fimmu.2023.1089001.
Article CAS PubMed PubMed Central Google Scholar
de Araujo AA, et al. Azilsartan reduced TNF-α and IL-1β levels, increased IL-10 levels and upregulated VEGF, FGF, KGF, and TGF-α in an oral mucositis model. PLoS ONE. 2015;10(2): e0116799. https://doi.org/10.1371/journal.pone.0116799.
Article CAS PubMed PubMed Central Google Scholar
Hedayatyanfard K, et al. Potential use of angiotensin receptor blockers in skin pathologies. Iran J Basic Med Sci. 2023;26(7):732–7. https://doi.org/10.22038/ijbms.2023.66563.14606.
Article PubMed PubMed Central Google Scholar
Huang Y, et al. Intradermal delivery of an angiotensin II receptor blocker using a personalized microneedle patch for treatment of hypertrophic scars. Biomater Sci. 2023;11(2):583–95. https://doi.org/10.1039/D2BM01631A.
Article CAS PubMed Google Scholar
Yahata Y, et al. A novel function of angiotensin II in skin wound healing: Induction of fibroblast and keratinocyte migration by angiotensin II via heparin-binding epidermal growth factor (EGF)-like growth factor-mediated EGF receptor transactivation. J Biol Chem. 2006;281(19):13209–16. https://doi.org/10.1074/jbc.M509771200.
Article CAS PubMed Google Scholar
Takeda H, et al. Effects of angiotensin II receptor signaling during skin wound healing. Am J Pathol. 2004;165(5):1653–62. https://doi.org/10.1016/S0002-9440(10)63422-0.
Article CAS PubMed PubMed Central Google Scholar
Dong Q, et al. Azilsartan suppressed LPS-induced inflammation in U937 macrophages through suppressing oxidative stress and inhibiting the TLR2/MyD88 signal pathway. ACS Omega. 2021;6(1):113–8. https://doi.org/10.1021/acsomega.0c03655.
Article CAS PubMed Google Scholar
Kumar G, et al. Central composite design implemented azilsartan medoxomil loaded nanoemulsion to improve its aqueous solubility and intestinal permeability: In vitro and ex vivo evaluation. Pharmaceuticals. 2022;15(11):1343. https://doi.org/10.3390/ph15111343.
Article CAS PubMed PubMed Central Google Scholar
Hamdan S, et al. Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent Sci. 2017;3(3):163–75. https://doi.org/10.1021/acscentsci.6b00371.
Article CAS PubMed PubMed Central Google Scholar
Desai N, et al. Chitosan: A potential biopolymer in drug delivery and biomedical applications. Pharmaceutics. 2023;15(4):1313. https://doi.org/10.3390/pharmaceutics15041313.
Article CAS PubMed PubMed Central Google Scholar
Jadbabaei S, et al. Preparation and characterization of sodium alginate–PVA polymeric scaffolds by electrospinning method for skin tissue engineering applications. RSC Adv. 2021;11(49):30674–88. https://doi.org/10.1039/D1RA04176B.
Article CAS PubMed PubMed Central Google Scholar
Adeli B, Gharehaghaji AA, Jeddi AAA. A feasibility study on production and optimization of PVDF/PU polyblend nanofiber layers using expert design analysis. Iran Polym J. 2021;30(6):535–45. https://doi.org/10.1007/s13726-021-00910-3.
Thien DVH. Electrospun chitosan/PVA nanofibers for drug delivery Vietnam J Sci Technol. 2018;54:185–1. https://doi.org/10.15625/2525-2518/54/4B/12040.
Rajan S, et al. Preparation and evaluation of ketoprofen film forming gel. Euro J Pharm Med Res. 2022;9(9):212–9.
Al-Suwayeh SA, et al. Evaluation of skin permeation and analgesic activity effects of carbopol lornoxicam topical gels containing penetration enhancer. Sci World J. 2014;2014: 127495. https://doi.org/10.1155/2014/127495.
Sa’adon S, et al. Electrospun nanofiber and cryogel of polyvinyl alcohol transdermal patch containing diclofenac sodium: preparation, characterization and in vitro release studies. Pharmaceutics. 2021;13(11):1900. https://doi.org/10.3390/pharmaceutics13111900.
Article CAS PubMed PubMed Central Google Scholar
Lodhi M, et al. Formulation and evaluation of buccal film of Ivabradine hydrochloride for the treatment of stable angina pectoris. Int J Pharm Investig. 2013;3(1):47. https://doi.org/10.4103/2230-973X.108963.
Article CAS PubMed PubMed Central Google Scholar
Satishbabu B, Srinivasan B. Preparation and evaluation of buccoadhesive films of atenolol. Indian J Pharm Sci. 2008;70(2):175. https://doi.org/10.4103/0250-474X.41451.
Article CAS PubMed PubMed Central Google Scholar
Pamlenyi K, et al. Stability, permeability and cytotoxicity of buccal films in allergy treatment. Pharmaceut
Comments (0)