The role of TMEM163 protein in thyroid microcarcinoma: expression pattern and clinical implications

Li Q, Feng T, Zhu T, Zhang W, Qian Y et al (2023) Multi-omics profiling of papillary thyroid microcarcinoma reveals different somatic mutations and a unique transcriptomic signature. J Transl Med 21(1):206. https://doi.org/10.1186/s12967-023-04045-2

Article  PubMed  PubMed Central  Google Scholar 

Sugitani I, Ito Y, Takeuchi D, Nakayama H, Masaki C et al (2021) Indications and strategy for active surveillance of adult low-risk papillary thyroid Microcarcinoma: Consensus statements from the Japan Association of Endocrine Surgery Task Force on Management for Papillary thyroid Microcarcinoma. Thyroid 31(2):183–192. https://doi.org/10.1089/thy.2020.0330

Article  PubMed  PubMed Central  Google Scholar 

Ren Y, Lu C, Xu S (2023) Ultrasound-guided thermal ablation for papillary thyroid microcarcinoma: the devil is in the details. Int J Hyperth 40(1):2278823. https://doi.org/10.1080/02656736.2023.2278823

Article  Google Scholar 

Cernea CR, Matos LL, Eugênio C, Ferreira GM, Cerqueira YS et al (2022) Active surveillance of thyroid microcarcinomas: a critical view. Curr Oncol Rep 24(1):69–76. https://doi.org/10.1007/s11912-021-01177-w

Article  PubMed  Google Scholar 

Kim K, Zheng X, Kim JK, Lee CR, Kang SW et al (2020) The contributing factors for lateral neck lymph node metastasis in papillary thyroid microcarcinoma (PTMC). Endocrine 69(1):149–156. https://doi.org/10.1007/s12020-020-02251-2

Article  CAS  PubMed  Google Scholar 

Burré J, Zimmermann H, Volknandt W (2007) Identification and characterization of SV31, a novel synaptic vesicle membrane protein and potential transporter. J Neurochem 103(1):276–287. https://doi.org/10.1111/j.1471-4159.2007.04758.x

Article  PubMed  Google Scholar 

Cuajungco MPK, Kiselyov (2017) The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling. Front Biosci (Landmark Ed) 22(8):1330–1343. https://doi.org/10.2741/4546

Article  CAS  PubMed  Google Scholar 

Barth J, Zimmermann H, Volknandt W (2011) SV31 is a Zn2+-binding synaptic vesicle protein. J Neurochem 118(4):558–570. https://doi.org/10.1111/j.1471-4159.2011.07344.x

Article  CAS  PubMed  Google Scholar 

Waberer L, Henrich E, Peetz O, Morgner N, Dötsch V et al (2017) The synaptic vesicle protein SV31 assembles into a dimer and transports zn(2). J Neurochem 140(2):280–293. https://doi.org/10.1111/jnc.13886

Article  CAS  PubMed  Google Scholar 

Sanchez VB, Ali S, Escobar A, Cuajungco MP (2019) Transmembrane 163 (TMEM163) protein effluxes zinc. Arch Biochem Biophys 677:108166. https://doi.org/10.1016/j.abb.2019.108166

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuajungco MP, Basilio LC, Silva J, Hart T, Tringali J et al (2014) Cellular zinc levels are modulated by TRPML1-TMEM163 interaction. Traffic 15(11):1247–1265. https://doi.org/10.1111/tra.12205

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan Y, Liu T, Huang X, Chen Y, Zhang W et al (2021) A zinc transporter, transmembrane protein 163, is critical for the biogenesis of platelet dense granules. Blood 137(13):1804–1817. https://doi.org/10.1182/blood.2020007389

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Y, Yang L, Zhang L, Zheng X, Xu H et al (2022) Identification of a Four-Gene Signature Associated with the Prognosis Prediction of Lung Adenocarcinoma Based on Integrated Bioinformatics Analysis. Genes (Basel) 13(2). https://doi.org/10.3390/genes13020238

Fan Y, Kao C, Yang F, Wang F, Yin G et al (2022) Integrated Multi-omics Analysis Model to identify biomarkers Associated with prognosis of breast Cancer. Front Oncol 12:899900. https://doi.org/10.3389/fonc.2022.899900

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Z, Ji X, Zhang H, Sun W (2024) Clinical and molecular features of progressive papillary thyroid microcarcinoma. Int J Surg. https://doi.org/10.1097/js9.0000000000001117

Article  PubMed  PubMed Central  Google Scholar 

Luo Y, Zhao Y, Chen K, Shen J, Shi J et al (2019) Clinical analysis of cervical lymph node metastasis risk factors in patients with papillary thyroid microcarcinoma. J Endocrinol Invest 42(2):227–236. https://doi.org/10.1007/s40618-018-0908-y

Article  CAS  PubMed  Google Scholar 

Yan Z, Gang LW, Yan GS, Zhou P (2022) Prediction of the invasiveness of PTMC by a combination of ultrasound and the WNT10A gene. Front Endocrinol (Lausanne) 13:1026059. https://doi.org/10.3389/fendo.2022.1026059

Article  PubMed  Google Scholar 

Lee S, Bae JS, Jung CK, Chung WY (2019) Extensive lymphatic spread of papillary thyroid microcarcinoma is associated with an increase in expression of genes involved in epithelial-mesenchymal transition and cancer stem cell-like properties. Cancer Med 8(15):6528–6537. https://doi.org/10.1002/cam4.2544

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dom G, Tarabichi M, Unger K, Thomas G, Oczko-Wojciechowska M et al (2012) A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas. Br J Cancer 107(6):994–1000. https://doi.org/10.1038/bjc.2012.302

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tarabichi M, Saiselet M, Trésallet C, Hoang C, Larsimont D et al (2015) Revisiting the transcriptional analysis of primary tumours and associated nodal metastases with enhanced biological and statistical controls: application to thyroid cancer. Br J Cancer 112(10):1665–1674. https://doi.org/10.1038/bjc.2014.665

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Wang C, Fu Z, Zhang S, Chen J (2021) miR-30b-5p inhibits proliferation, invasion, and migration of papillary thyroid cancer by targeting GALNT7 via the EGFR/PI3K/AKT pathway. Cancer Cell Int 21(1):618. https://doi.org/10.1186/s12935-021-02323-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C, Wang Y, Fu Z, Huang W, Yu Z et al (2022) MiR-29b-3p inhibits Migration and Invasion of Papillary thyroid carcinoma by downregulating COL1A1 and COL5A1. Front Oncol 12:837581. https://doi.org/10.3389/fonc.2022.837581

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Wang J, Wang C, Chen Y, Chen J (2022) DIO3OS as a potential biomarker of papillary thyroid cancer. Pathol Res Pract 229:153695. https://doi.org/10.1016/j.prp.2021.153695

Article  CAS  PubMed  Google Scholar 

Sun J, Jiang Q, Wang X, Liu W, Wang X (2021) Nomogram for Preoperative Estimation of Cervical Lymph Node Metastasis Risk in papillary thyroid microcarcinoma. Front Endocrinol (Lausanne) 12:613974. https://doi.org/10.3389/fendo.2021.613974

Article  PubMed  Google Scholar 

Chakraborty S, Vellarikkal SK, Sivasubbu S, Roy SS, Tandon N et al (2020) Role of Tmem163 in zinc-regulated insulin storage of MIN6 cells: functional exploration of an Indian type 2 diabetes GWAS associated gene. Biochem Biophys Res Commun 522(4):1022–1029. https://doi.org/10.1016/j.bbrc.2019.11.117

Article  CAS  PubMed  Google Scholar 

Tabassum R, Chauhan G, Dwivedi OP, Mahajan A, Jaiswal A et al (2013) Genome-wide association study for type 2 diabetes in indians identifies a new susceptibility locus at 2q21. Diabetes 62(3):977–986. https://doi.org/10.2337/db12-0406

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chapman EM, Lant B, Ohashi Y, Yu B, Schertzberg M et al (2019) A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis. Nat Commun 10(1):1791. https://doi.org/10.1038/s41467-019-09829-z

Article  PubMed  PubMed Central  Google Scholar 

Yang R, Li G, Zhuang C, Yu P, Ye T et al (2021) Gradient bimetallic ion-based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Sci Adv 7(26). https://doi.org/10.1126/sciadv.abg3816

Comments (0)

No login
gif