Li Q, Feng T, Zhu T, Zhang W, Qian Y et al (2023) Multi-omics profiling of papillary thyroid microcarcinoma reveals different somatic mutations and a unique transcriptomic signature. J Transl Med 21(1):206. https://doi.org/10.1186/s12967-023-04045-2
Article PubMed PubMed Central Google Scholar
Sugitani I, Ito Y, Takeuchi D, Nakayama H, Masaki C et al (2021) Indications and strategy for active surveillance of adult low-risk papillary thyroid Microcarcinoma: Consensus statements from the Japan Association of Endocrine Surgery Task Force on Management for Papillary thyroid Microcarcinoma. Thyroid 31(2):183–192. https://doi.org/10.1089/thy.2020.0330
Article PubMed PubMed Central Google Scholar
Ren Y, Lu C, Xu S (2023) Ultrasound-guided thermal ablation for papillary thyroid microcarcinoma: the devil is in the details. Int J Hyperth 40(1):2278823. https://doi.org/10.1080/02656736.2023.2278823
Cernea CR, Matos LL, Eugênio C, Ferreira GM, Cerqueira YS et al (2022) Active surveillance of thyroid microcarcinomas: a critical view. Curr Oncol Rep 24(1):69–76. https://doi.org/10.1007/s11912-021-01177-w
Kim K, Zheng X, Kim JK, Lee CR, Kang SW et al (2020) The contributing factors for lateral neck lymph node metastasis in papillary thyroid microcarcinoma (PTMC). Endocrine 69(1):149–156. https://doi.org/10.1007/s12020-020-02251-2
Article CAS PubMed Google Scholar
Burré J, Zimmermann H, Volknandt W (2007) Identification and characterization of SV31, a novel synaptic vesicle membrane protein and potential transporter. J Neurochem 103(1):276–287. https://doi.org/10.1111/j.1471-4159.2007.04758.x
Cuajungco MPK, Kiselyov (2017) The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling. Front Biosci (Landmark Ed) 22(8):1330–1343. https://doi.org/10.2741/4546
Article CAS PubMed Google Scholar
Barth J, Zimmermann H, Volknandt W (2011) SV31 is a Zn2+-binding synaptic vesicle protein. J Neurochem 118(4):558–570. https://doi.org/10.1111/j.1471-4159.2011.07344.x
Article CAS PubMed Google Scholar
Waberer L, Henrich E, Peetz O, Morgner N, Dötsch V et al (2017) The synaptic vesicle protein SV31 assembles into a dimer and transports zn(2). J Neurochem 140(2):280–293. https://doi.org/10.1111/jnc.13886
Article CAS PubMed Google Scholar
Sanchez VB, Ali S, Escobar A, Cuajungco MP (2019) Transmembrane 163 (TMEM163) protein effluxes zinc. Arch Biochem Biophys 677:108166. https://doi.org/10.1016/j.abb.2019.108166
Article CAS PubMed PubMed Central Google Scholar
Cuajungco MP, Basilio LC, Silva J, Hart T, Tringali J et al (2014) Cellular zinc levels are modulated by TRPML1-TMEM163 interaction. Traffic 15(11):1247–1265. https://doi.org/10.1111/tra.12205
Article CAS PubMed PubMed Central Google Scholar
Yuan Y, Liu T, Huang X, Chen Y, Zhang W et al (2021) A zinc transporter, transmembrane protein 163, is critical for the biogenesis of platelet dense granules. Blood 137(13):1804–1817. https://doi.org/10.1182/blood.2020007389
Article CAS PubMed PubMed Central Google Scholar
Wu Y, Yang L, Zhang L, Zheng X, Xu H et al (2022) Identification of a Four-Gene Signature Associated with the Prognosis Prediction of Lung Adenocarcinoma Based on Integrated Bioinformatics Analysis. Genes (Basel) 13(2). https://doi.org/10.3390/genes13020238
Fan Y, Kao C, Yang F, Wang F, Yin G et al (2022) Integrated Multi-omics Analysis Model to identify biomarkers Associated with prognosis of breast Cancer. Front Oncol 12:899900. https://doi.org/10.3389/fonc.2022.899900
Article CAS PubMed PubMed Central Google Scholar
Wang Z, Ji X, Zhang H, Sun W (2024) Clinical and molecular features of progressive papillary thyroid microcarcinoma. Int J Surg. https://doi.org/10.1097/js9.0000000000001117
Article PubMed PubMed Central Google Scholar
Luo Y, Zhao Y, Chen K, Shen J, Shi J et al (2019) Clinical analysis of cervical lymph node metastasis risk factors in patients with papillary thyroid microcarcinoma. J Endocrinol Invest 42(2):227–236. https://doi.org/10.1007/s40618-018-0908-y
Article CAS PubMed Google Scholar
Yan Z, Gang LW, Yan GS, Zhou P (2022) Prediction of the invasiveness of PTMC by a combination of ultrasound and the WNT10A gene. Front Endocrinol (Lausanne) 13:1026059. https://doi.org/10.3389/fendo.2022.1026059
Lee S, Bae JS, Jung CK, Chung WY (2019) Extensive lymphatic spread of papillary thyroid microcarcinoma is associated with an increase in expression of genes involved in epithelial-mesenchymal transition and cancer stem cell-like properties. Cancer Med 8(15):6528–6537. https://doi.org/10.1002/cam4.2544
Article CAS PubMed PubMed Central Google Scholar
Dom G, Tarabichi M, Unger K, Thomas G, Oczko-Wojciechowska M et al (2012) A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas. Br J Cancer 107(6):994–1000. https://doi.org/10.1038/bjc.2012.302
Article CAS PubMed PubMed Central Google Scholar
Tarabichi M, Saiselet M, Trésallet C, Hoang C, Larsimont D et al (2015) Revisiting the transcriptional analysis of primary tumours and associated nodal metastases with enhanced biological and statistical controls: application to thyroid cancer. Br J Cancer 112(10):1665–1674. https://doi.org/10.1038/bjc.2014.665
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Wang C, Fu Z, Zhang S, Chen J (2021) miR-30b-5p inhibits proliferation, invasion, and migration of papillary thyroid cancer by targeting GALNT7 via the EGFR/PI3K/AKT pathway. Cancer Cell Int 21(1):618. https://doi.org/10.1186/s12935-021-02323-x
Article CAS PubMed PubMed Central Google Scholar
Wang C, Wang Y, Fu Z, Huang W, Yu Z et al (2022) MiR-29b-3p inhibits Migration and Invasion of Papillary thyroid carcinoma by downregulating COL1A1 and COL5A1. Front Oncol 12:837581. https://doi.org/10.3389/fonc.2022.837581
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Wang J, Wang C, Chen Y, Chen J (2022) DIO3OS as a potential biomarker of papillary thyroid cancer. Pathol Res Pract 229:153695. https://doi.org/10.1016/j.prp.2021.153695
Article CAS PubMed Google Scholar
Sun J, Jiang Q, Wang X, Liu W, Wang X (2021) Nomogram for Preoperative Estimation of Cervical Lymph Node Metastasis Risk in papillary thyroid microcarcinoma. Front Endocrinol (Lausanne) 12:613974. https://doi.org/10.3389/fendo.2021.613974
Chakraborty S, Vellarikkal SK, Sivasubbu S, Roy SS, Tandon N et al (2020) Role of Tmem163 in zinc-regulated insulin storage of MIN6 cells: functional exploration of an Indian type 2 diabetes GWAS associated gene. Biochem Biophys Res Commun 522(4):1022–1029. https://doi.org/10.1016/j.bbrc.2019.11.117
Article CAS PubMed Google Scholar
Tabassum R, Chauhan G, Dwivedi OP, Mahajan A, Jaiswal A et al (2013) Genome-wide association study for type 2 diabetes in indians identifies a new susceptibility locus at 2q21. Diabetes 62(3):977–986. https://doi.org/10.2337/db12-0406
Article CAS PubMed PubMed Central Google Scholar
Chapman EM, Lant B, Ohashi Y, Yu B, Schertzberg M et al (2019) A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis. Nat Commun 10(1):1791. https://doi.org/10.1038/s41467-019-09829-z
Article PubMed PubMed Central Google Scholar
Yang R, Li G, Zhuang C, Yu P, Ye T et al (2021) Gradient bimetallic ion-based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Sci Adv 7(26). https://doi.org/10.1126/sciadv.abg3816
Comments (0)