Phelan AL, Katz R, Gostin LO. The novel coronavirus originating in Wuhan, China. JAMA. 2020 [cited 2023 Nov 5];323:709. Available from: https://jamanetwork.com/journals/jama/fullarticle/2760500.
Jee Y. WHO International Health Regulations Emergency Committee for the COVID-19 outbreak. Epidemiol Health. 2020 [cited 2023 Nov 5];42:e2020013. Available from: http://e-epih.org/journal/view.php?doi=10.4178/epih.e2020013.
Worobey M, Pekar J, Larsen BB, Nelson MI, Hill V, Joy JB, et al. The emergence of SARS-CoV-2 in Europe and North America. Science. 2020 [cited 2023 Nov 5];370:564–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32912998.
Rao DKS. Impact of Covid-19 in 3 years. Times of India. 2023.
Pullano G, Valdano E, Scarpa N, Rubrichi S, Colizza V. Evaluating the effect of demographic factors, socioeconomic factors, and risk aversion on mobility during the COVID-19 epidemic in France under lockdown: a population-based study. Lancet Digit Health. 2020;2:e638–49. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2589750020302430.
Kumari P, Singh A, Ngasainao MR, Shakeel I, Kumar S, Lal S, et al. Potential diagnostics and therapeutic approaches in COVID-19. Clin Chim Acta. 2020;510:488–97.
Article CAS PubMed PubMed Central Google Scholar
Hughes MM, Wang A, Grossman MK, Pun E, Whiteman A, Deng L, et al. County-level COVID-19 vaccination coverage and social vulnerability — United States, December 14, 2020–March 1, 2021. MMWR Morb Mortal Wkly Rep. 2021;70:431–6.
Article CAS PubMed PubMed Central Google Scholar
Mascellino MT, Di Timoteo F, De Angelis M, Oliva A. Overview of the main anti-SARS-CoV-2 vaccines: mechanism of action, efficacy and safety. Infect Drug Resist. 2021 [cited 2023 Nov 5];Volume 14:3459–76. Available from: https://www.dovepress.com/overview-of-the-main-anti-sars-cov-2-vaccines-mechanism-of-action-effi-peer-reviewed-fulltext-article-IDR.
Rosenfeld R, Noy-Porat T, Mechaly A, Makdasi E, Levy Y, Alcalay R, et al. Post-exposure protection of SARS-CoV-2 lethal infected K18-hACE2 transgenic mice by neutralizing human monoclonal antibody. Nat Commun. 2021 [cited 2023 Nov 5];12:944. Available from: https://www.nature.com/articles/s41467-021-21239-8.
Pilkington V, Keestra SM, Hill A. Global COVID-19 Vaccine inequity: failures in the first year of distribution and potential solutions for the future. Front Public Health. 2022 [cited 2023 Nov 5];10:821117. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35321196.
Nagar S, Talwar C, Haider S, Puri A, Ponnusamy K, Gupta M, et al. Phylogenetic relationships and potential functional attributes of the genus Parapedobacter: a member of family Sphingobacteriaceae. Front Microbiol. 2020;11. https://doi.org/10.3389/fmicb.2020.01725.
Moti UG, Goon D Ter. Novel coronavirus disease: a delicate balancing act between health and the economy. Pak J Med Sci. 2020 [cited 2023 Nov 5];36:S134. Available from: https://www.pjms.org.pk/index.php/pjms/article/view/2751.
Costello EJ, Angold A. Developmental epidemiology. In: Developmental psychopathology. 2016. p. 1–35. https://doi.org/10.1002/9781119125556.devpsy103.
Calcaterra G, Bassareo PP, Barilla F, Romeo F, de Gregorio C, Mehta P, et al. Syndemic: a synergistic anthropological approach to the COVID-19 pandemic. Encyclopedia. 2022;2:1344–56.
WHO team, COVID-19 weekly epidemiological update, Edition 162 https://www.who.int/publications/m/item/covid-19-epidemiological-update---22-december-2023, 2023
Swan DA, Bracis C, Janes H, Moore M, Matrajt L, Reeves DB, et al. COVID-19 vaccines that reduce symptoms but do not block infection need higher coverage and faster rollout to achieve population impact. Sci Rep. 2021;11:15531.
Article CAS PubMed PubMed Central Google Scholar
Yang Z, Zhang S, Tang Y-P, Zhang S, Xu D-Q, Yue S-J, et al. Clinical characteristics, transmissibility, pathogenicity, susceptible populations, and re-infectivity of prominent COVID-19 variants. Aging Dis. 2022 [cited 2023 Nov 5];13:402. Available from: http://www.aginganddisease.org/EN/10.14336/AD.2021.1210.
Liu DX, Liang JQ, Fung TS. Human coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). In: Encyclopedia of virology. Elsevier; 2021. p. 428–40. https://doi.org/10.1016/B978-0-12-809633-8.21501-X.
Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020;26:729–34.
Article CAS PubMed PubMed Central Google Scholar
Giovanetti M, Benedetti F, Campisi G, Ciccozzi A, Fabris S, Ceccarelli G, et al. Evolution patterns of SARS-CoV-2: snapshot on its genome variants. Biochem Biophys Res Commun. 2021;538:88–91.
Article CAS PubMed Google Scholar
Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182:812-827.e19.
Article CAS PubMed PubMed Central Google Scholar
Lau SKP, Woo PCY, Li KSM, Huang Y, Tsoi H-W, Wong BHL, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci. 2005;102:14040–5.
Article CAS PubMed PubMed Central Google Scholar
Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 1979;2005(310):676–9.
Hu B, Zeng L-P, Yang X-L, Ge X-Y, Zhang W, Li B, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017;13: e1006698.
Article PubMed PubMed Central Google Scholar
Wang M-N, Zhang W, Gao Y-T, Hu B, Ge X-Y, Yang X-L, et al. Longitudinal surveillance of SARS-like coronaviruses in bats by quantitative real-time PCR. Virol Sin. 2016;31:78–80.
Article PubMed PubMed Central Google Scholar
Zhang C, Zheng W, Huang X, Bell EW, Zhou X, Zhang Y. protein structure and sequence reanalysis of 2019-nCoV genome refutes snakes as its intermediate host and the unique similarity between its spike protein insertions and HIV-1. J Proteome Res. 2020;19:1351–60.
Article CAS PubMed PubMed Central Google Scholar
Zhou Y, Zhang S, Chen J, Wan C, Zhao W, Zhang B. Analysis of variation and evolution of SARS-CoV-2 genome. Nan Fang Yi Ke Da Xue Xue Bao. 2020 [cited 2023 Nov 5];40:152–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32376535.
Chen J, Liu D, Liu Li, Liu P, Qingnian Xu, Xia Lu, et al. A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020;49:215–9.
PubMed PubMed Central Google Scholar
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26:450–2.
Article CAS PubMed PubMed Central Google Scholar
Air GM. Influenza virus–glycan interactions. Curr Opin Virol. 2014 [cited 2023 Nov 5];7:128–33. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1879625714001436.
Singh IK, Kumari P, Mittal P, Kumar A, Singal B, Hasan GM, et al. Emerging therapeutic approaches to COVID-19. Curr Pharm Des. 2021;27:3370–88.
Article CAS PubMed Google Scholar
Hart WS, Miller E, Andrews NJ, Waight P, Maini PK, Funk S, et al. Generation time of the alpha and delta SARS-CoV-2 variants: an epidemiological analysis. Lancet Infect Dis. 2022 [cited 2023 Nov 5];22:603–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35176230.
Martínez-Rodríguez D, Gonzalez-Parra G, Villanueva R-J. Analysis of key factors of a SARS-CoV-2 vaccination program: a mathematical modeling approach. Epidemiologia. 2021 [cited 2023 Nov 5];2:140–61. Available from: https://www.mdpi.com/2673-3986/2/2/12.
Rustagi V, Bajaj M, Tanvi, Singh P, Aggarwal R, AlAjmi MF, et al. Analyzing the effect of vaccination over COVID cases and deaths in Asian countries using machine learning models. Front Cell Infect Microbiol. 2021 [cited 2023 Nov 5];11:806265. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35223534.
Zhang J, Zhang Y, Kang J-Y, Chen S, He Y, Han B, et al. Potential transmission chains of variant B.1.1.7 and co-mutations of SARS-CoV-2. Cell Discov. 2021 [cited 2023 Nov 5];7:44. Available from: https://www.nature.com/articles/s41421-021-00282-1
Eales O, Page AJ, Tang SN, Walters CE, Wang H, Haw D, et al. SARS-CoV-2 lineage dynamics in England from January to March 2021 inferred from representative community samples. medRxiv. 2021 [cited 2023 Nov 5];2021.05.08.21256867. Available from: https://www.medrxiv.org/content/10.1101/2021.05.08.21256867v1.
Gräf T, Bello G, Venas TMM, Pereira EC, Paixão ACD, Appolinario LR, et al. Identification of a novel SARS-CoV-2 P.1 sub-lineage in Brazil provides new insights about the mechanisms of emergence of variants of concern. Virus Evol. 2021 [cited 2023 Nov 5];7:1–10. Available from: https://academic.oup.com/ve/article/doi/10.1093/ve/veab091/6462077.
Zhang M, Liang Y, Yu D, Du B, Cheng W, Li L, et al. A systematic review of vaccine breakthrough infections by SARS-CoV-2 Delta variant. Int J Biol Sci. 2022;18:889–900.
Article CAS PubMed PubMed Central Google Scholar
Ai J, Zhang H, Zhang Y, Lin K, Zhang Y, Wu J, et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg Microbes Infect. 2022 [cited 2023 Nov 5];11:337–43. Available from: https://www.tandfonline.com/doi/full/10.1080/22221751.2021.2022440.
Sunainaa Chadha. Explainer: why WHO named latest Covid variant, first detected in South Africa, Omicro. 2021.
Williams AH, Zhan CG. Fast prediction of binding affinities of the Sars-CoV-2 spike protein mutant N501Y (UK variant) with ACE2 and miniprotein drug candidates. J Phys Chem B. 2021 [cited 2023 Nov 5];125:4330–6. Available from: https://pubs.acs.org/doi/full/10.1021/acs.jpcb.1c00869.
Nelson G, Buzko O, Spilman P, Niazi K, Rabizadeh S, Soon-Shiong P. Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant. bioRxiv. 2021 [cited 2023 Nov 5];2021.01.13.426558. Available from: https://www.biorxiv.org/content/10.1101/2021.01.13.426558v1.
Barton MI, MacGowan SA, Kutuzov MA, Dushek O, Barton GJ, van der Merwe PA. Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. Elife. 2021 [cited 2023 Nov 5];10. Available from: https://elifesciences.org/articles/70658.
Tchesnokova V, Kulasekara H, Larson L, Bowers V, Rechkina E, Kisiela D, et al. Acquisition of the L452R mutation in the ACE2-binding interface of spike protein triggers recent massive expansion of SARS-CoV-2 variants. Mellmann A, editor. J Clin Microbiol. 2021 [cited 2023 Nov 5];59:e0092121. Available from: https://journals.asm.org/doi/10.1128/JCM.00921-21.
Saito A, Irie T, Suzuki R, Maemura T, Uriu K, Kosugi Y, et al. SARS-CoV-2 spike P681R mutation enhances and accelerates viral fusion. 2021 [cited 2023 Nov 5]; Available from: https://europepmc.org/article/PPR/PPR358614.
Meselson M. Droplets and aerosols in the transmission of SARS-CoV-2. N Engl J Med. 2020;382:2063–2063.
Morawska L, Cao J. Airborne transmission of SARS-CoV-2: the world should face the reality. Environ Int. 2020;139: 105730.
Article CAS PubMed PubMed Central Google Scholar
Sommerstein R, Fux CA, Vuichard-Gysin D, Abbas M, Marschall J, Balmelli C, et al. Risk of SARS-CoV-2 transmission by aerosols, the rational use of masks, and protection of healthcare workers from COVID-19. Antimicrob Resist Infect Control. 2020;9:100.
Article PubMed PubMed Central Google Scholar
Tang S, Mao Y, Jones RM, Tan Q, Ji JS, Li N, et al. Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environ Int. 2020;144: 106039.
Article CAS PubMed PubMed Central Google Scholar
van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382:1564–7.
Comments (0)