Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation. 2024;149:e347–e913.
Zhao D, Liu J, Wang M, Zhang X, Zhou M. Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol. 2019;16:203–12.
Libby P. The changing landscape of atherosclerosis. Nature. 2021;592:524–33.
Article CAS PubMed Google Scholar
Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–66.
Article CAS PubMed Google Scholar
Bhatt DL. Percutaneous coronary intervention in 2018. JAMA. 2018;319:2127–8.
Azzalini L, Karmpaliotis D, Santiago R, Mashayekhi K, Di Mario C, Rinfret S, et al. Contemporary issues in chronic total occlusion percutaneous coronary intervention. JACC Cardiovasc Inter. 2022;15:1–21.
Fezzi S, Ding D, Mahfoud F, Huang J, Lansky AJ, Tu S, et al. Illusion of revascularization: does anyone achieve optimal revascularization during percutaneous coronary intervention? Nat Rev Cardiol. 2024;21:652–62.
Schafer S, Gogiraju R, Rosch M, Kerstan Y, Beck L, Garbisch J, et al. CD8+ T cells drive plaque smooth muscle cell dedifferentiation in experimental atherosclerosis. Arterioscler Thromb Vasc Biol. 2024;44:1852–72.
Rzucidlo EM, Martin KA, Powell RJ. Regulation of vascular smooth muscle cell differentiation. J Vasc Surg. 2007;45:A25–32.
Chen R, McVey DG, Shen D, Huang X, Ye S. Phenotypic switching of vascular smooth muscle cells in atherosclerosis. J Am Heart Assoc. 2023;12:e031121.
Article CAS PubMed PubMed Central Google Scholar
Bouabdallaoui N, Tardif JC, Waters DD, Pinto FJ, Maggioni AP, Diaz R, et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur Heart J. 2020;41:4092–9.
Article CAS PubMed PubMed Central Google Scholar
Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61:404–10.
Article CAS PubMed Google Scholar
Nidorf SM, Fiolet ATL, Eikelboom JW, Schut A, Opstal TSJ, Bax WA, et al. The effect of low-dose colchicine in patients with stable coronary artery disease: The LoDoCo2 trial rationale, design, and baseline characteristics. Am Heart J. 2019;218:46–56.
Article CAS PubMed Google Scholar
Barco S, Schreiber K. COVID-19: ACT trials for colchicine and antithrombotic therapies. Lancet Respir Med. 2022;10:1106–8.
Article CAS PubMed PubMed Central Google Scholar
Li W, Lin A, Hutton M, Dhaliwal H, Nadel J, Rodor J, et al. Colchicine promotes atherosclerotic plaque stability independently of inflammation. Preprint at bioRxiv. 2023. https://doi.org/10.1101/2023.10.03.560632.
Schwarz N, Fernando S, Chen YC, Salagaras T, Rao SR, Liyanage S, et al. Colchicine exerts anti-atherosclerotic and -plaque-stabilizing effects targeting foam cell formation. FASEB J. 2023;37:e22846.
Article CAS PubMed Google Scholar
Li P, Zhu N, Yi B, Wang N, Chen M, You X, et al. MicroRNA-663 regulates human vascular smooth muscle cell phenotypic switch and vascular neointimal formation. Circ Res. 2013;113:1117–27.
Article CAS PubMed PubMed Central Google Scholar
Chen Y, Duan Y, Yang X, Sun L, Liu M, Wang Q, et al. Inhibition of ERK1/2 and activation of LXR synergistically reduce atherosclerotic lesions in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2015;35:948–59.
Article CAS PubMed Google Scholar
Liang Y, Han H, Liu L, Duan Y, Yang X, Ma C, et al. CD36 plays a critical role in proliferation, migration and tamoxifen-inhibited growth of ER-positive breast cancer cells. Oncogenesis. 2018;7:98.
Article PubMed PubMed Central Google Scholar
Zhang B, Huang R, Yang D, Chen G, Chen Y, Han J, et al. Combination of colchicine and ticagrelor inhibits carrageenan-induced thrombi in mice. Oxid Med Cell Longev. 2022;2022:3087198.
PubMed PubMed Central Google Scholar
Fujiki K, Inamura H, Matsuoka M. Phosphorylation of FOXO3a by PI3K/Akt pathway in HK-2 renal proximal tubular epithelial cells exposed to cadmium. Arch Toxicol. 2013;87:2119–27.
Article CAS PubMed Google Scholar
Yang X, Gong Y, Tang Y, Li H, He Q, Gower L, et al. Spry1 and Spry4 differentially regulate human aortic smooth muscle cell phenotype via Akt/FoxO/myocardin signaling. PLoS One. 2013;8:e58746.
Article CAS PubMed PubMed Central Google Scholar
Tan WQ, Wang K, Lv DY, Li PF. Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase. J Biol Chem. 2008;283:29730–9.
Article CAS PubMed PubMed Central Google Scholar
Grootaert MOJ, Moulis M, Roth L, Martinet W, Vindis C, Bennett MR, et al. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res. 2018;114:622–34.
Article CAS PubMed Google Scholar
Chen M, Yang D, Zhou Y, Yang C, Lin W, Li J, et al. Colchicine blocks abdominal aortic aneurysm development by maintaining vascular smooth muscle cell homeostasis. Int J Biol Sci. 2024;20:2092–110.
Article CAS PubMed PubMed Central Google Scholar
Zhao Y, Shen QR, Chen YX, Shi Y, Wu WB, Li Q, et al. Colchicine protects against the development of experimental abdominal aortic aneurysm. Clin Sci (Lond). 2023;137:1533–45.
Article CAS PubMed Google Scholar
March KL, Mohanraj S, Ho PP, Wilensky RL, Hathaway DR. Biodegradable microspheres containing a colchicine analogue inhibit DNA synthesis in vascular smooth muscle cells. Circulation. 1994;89:1929–33.
Article CAS PubMed Google Scholar
Pan H, Ho SE, Xue C, Cui J, Johanson QS, Sachs N, et al. Atherosclerosis is a smooth muscle cell-driven tumor-like disease. Circulation. 2024;149:1885–98.
Article CAS PubMed Google Scholar
Monsalve M, Olmos Y. The complex biology of FOXO. Curr Drug Targets. 2011;12:1322–50.
Article CAS PubMed Google Scholar
Biggs WH 3rd, Cavenee WK, Arden KC. Identification and characterization of members of the FKHR (FOX O) subclass of winged-helix transcription factors in the mouse. Mamm Genome. 2001;12:416–25.
Article CAS PubMed Google Scholar
Brunet A, Kanai F, Stehn J, Xu J, Sarbassova D, Frangioni JV, et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol. 2002;156:817–28.
Article CAS PubMed PubMed Central Google Scholar
Li Z, Zhao J, Tikhanovich I, Kuravi S, Helzberg J, Dorko K, et al. Serine 574 phosphorylation alters transcriptional programming of FOXO3 by selectively enhancing apoptotic gene expression. Cell Death Differ. 2016;23:583–95.
Comments (0)