Colchicine reduces neointima formation and VSMC phenotype transition by modulating SRF-MYOCD activation and autophagy

Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation. 2024;149:e347–e913.

Article  PubMed  Google Scholar 

Zhao D, Liu J, Wang M, Zhang X, Zhou M. Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol. 2019;16:203–12.

Article  PubMed  Google Scholar 

Libby P. The changing landscape of atherosclerosis. Nature. 2021;592:524–33.

Article  CAS  PubMed  Google Scholar 

Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–66.

Article  CAS  PubMed  Google Scholar 

Bhatt DL. Percutaneous coronary intervention in 2018. JAMA. 2018;319:2127–8.

Article  PubMed  Google Scholar 

Azzalini L, Karmpaliotis D, Santiago R, Mashayekhi K, Di Mario C, Rinfret S, et al. Contemporary issues in chronic total occlusion percutaneous coronary intervention. JACC Cardiovasc Inter. 2022;15:1–21.

Article  Google Scholar 

Fezzi S, Ding D, Mahfoud F, Huang J, Lansky AJ, Tu S, et al. Illusion of revascularization: does anyone achieve optimal revascularization during percutaneous coronary intervention? Nat Rev Cardiol. 2024;21:652–62.

Article  PubMed  Google Scholar 

Schafer S, Gogiraju R, Rosch M, Kerstan Y, Beck L, Garbisch J, et al. CD8+ T cells drive plaque smooth muscle cell dedifferentiation in experimental atherosclerosis. Arterioscler Thromb Vasc Biol. 2024;44:1852–72.

Article  PubMed  Google Scholar 

Rzucidlo EM, Martin KA, Powell RJ. Regulation of vascular smooth muscle cell differentiation. J Vasc Surg. 2007;45:A25–32.

Article  PubMed  Google Scholar 

Chen R, McVey DG, Shen D, Huang X, Ye S. Phenotypic switching of vascular smooth muscle cells in atherosclerosis. J Am Heart Assoc. 2023;12:e031121.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouabdallaoui N, Tardif JC, Waters DD, Pinto FJ, Maggioni AP, Diaz R, et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur Heart J. 2020;41:4092–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61:404–10.

Article  CAS  PubMed  Google Scholar 

Nidorf SM, Fiolet ATL, Eikelboom JW, Schut A, Opstal TSJ, Bax WA, et al. The effect of low-dose colchicine in patients with stable coronary artery disease: The LoDoCo2 trial rationale, design, and baseline characteristics. Am Heart J. 2019;218:46–56.

Article  CAS  PubMed  Google Scholar 

Barco S, Schreiber K. COVID-19: ACT trials for colchicine and antithrombotic therapies. Lancet Respir Med. 2022;10:1106–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Lin A, Hutton M, Dhaliwal H, Nadel J, Rodor J, et al. Colchicine promotes atherosclerotic plaque stability independently of inflammation. Preprint at bioRxiv. 2023. https://doi.org/10.1101/2023.10.03.560632.

Schwarz N, Fernando S, Chen YC, Salagaras T, Rao SR, Liyanage S, et al. Colchicine exerts anti-atherosclerotic and -plaque-stabilizing effects targeting foam cell formation. FASEB J. 2023;37:e22846.

Article  CAS  PubMed  Google Scholar 

Li P, Zhu N, Yi B, Wang N, Chen M, You X, et al. MicroRNA-663 regulates human vascular smooth muscle cell phenotypic switch and vascular neointimal formation. Circ Res. 2013;113:1117–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Duan Y, Yang X, Sun L, Liu M, Wang Q, et al. Inhibition of ERK1/2 and activation of LXR synergistically reduce atherosclerotic lesions in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2015;35:948–59.

Article  CAS  PubMed  Google Scholar 

Liang Y, Han H, Liu L, Duan Y, Yang X, Ma C, et al. CD36 plays a critical role in proliferation, migration and tamoxifen-inhibited growth of ER-positive breast cancer cells. Oncogenesis. 2018;7:98.

Article  PubMed  PubMed Central  Google Scholar 

Zhang B, Huang R, Yang D, Chen G, Chen Y, Han J, et al. Combination of colchicine and ticagrelor inhibits carrageenan-induced thrombi in mice. Oxid Med Cell Longev. 2022;2022:3087198.

PubMed  PubMed Central  Google Scholar 

Fujiki K, Inamura H, Matsuoka M. Phosphorylation of FOXO3a by PI3K/Akt pathway in HK-2 renal proximal tubular epithelial cells exposed to cadmium. Arch Toxicol. 2013;87:2119–27.

Article  CAS  PubMed  Google Scholar 

Yang X, Gong Y, Tang Y, Li H, He Q, Gower L, et al. Spry1 and Spry4 differentially regulate human aortic smooth muscle cell phenotype via Akt/FoxO/myocardin signaling. PLoS One. 2013;8:e58746.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan WQ, Wang K, Lv DY, Li PF. Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase. J Biol Chem. 2008;283:29730–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grootaert MOJ, Moulis M, Roth L, Martinet W, Vindis C, Bennett MR, et al. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res. 2018;114:622–34.

Article  CAS  PubMed  Google Scholar 

Chen M, Yang D, Zhou Y, Yang C, Lin W, Li J, et al. Colchicine blocks abdominal aortic aneurysm development by maintaining vascular smooth muscle cell homeostasis. Int J Biol Sci. 2024;20:2092–110.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao Y, Shen QR, Chen YX, Shi Y, Wu WB, Li Q, et al. Colchicine protects against the development of experimental abdominal aortic aneurysm. Clin Sci (Lond). 2023;137:1533–45.

Article  CAS  PubMed  Google Scholar 

March KL, Mohanraj S, Ho PP, Wilensky RL, Hathaway DR. Biodegradable microspheres containing a colchicine analogue inhibit DNA synthesis in vascular smooth muscle cells. Circulation. 1994;89:1929–33.

Article  CAS  PubMed  Google Scholar 

Pan H, Ho SE, Xue C, Cui J, Johanson QS, Sachs N, et al. Atherosclerosis is a smooth muscle cell-driven tumor-like disease. Circulation. 2024;149:1885–98.

Article  CAS  PubMed  Google Scholar 

Monsalve M, Olmos Y. The complex biology of FOXO. Curr Drug Targets. 2011;12:1322–50.

Article  CAS  PubMed  Google Scholar 

Biggs WH 3rd, Cavenee WK, Arden KC. Identification and characterization of members of the FKHR (FOX O) subclass of winged-helix transcription factors in the mouse. Mamm Genome. 2001;12:416–25.

Article  CAS  PubMed  Google Scholar 

Brunet A, Kanai F, Stehn J, Xu J, Sarbassova D, Frangioni JV, et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol. 2002;156:817–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Z, Zhao J, Tikhanovich I, Kuravi S, Helzberg J, Dorko K, et al. Serine 574 phosphorylation alters transcriptional programming of FOXO3 by selectively enhancing apoptotic gene expression. Cell Death Differ. 2016;23:583–95.

Article  CAS  PubMed 

Comments (0)

No login
gif