Yamamoto E, Yonetsu T, Kakuta T, Soeda T, Saito Y, Yan BP, et al. Clinical and laboratory predictors for plaque erosion in patients with acute coronary syndromes. J Am Heart Assoc. 2019;8(21):e012322. https://doi.org/10.1161/jaha.119.012322.
Article CAS PubMed PubMed Central Google Scholar
Salari N, Morddarvanjoghi F, Abdolmaleki A, Rasoulpoor S, Khaleghi AA, Hezarkhani LA, et al. The global prevalence of myocardial infarction: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2023;23(1):206. https://doi.org/10.1186/s12872-023-03231-w.
Article PubMed PubMed Central Google Scholar
van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89(1):36–44. https://doi.org/10.1161/01.cir.89.1.36.
Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation. 1996;93(7):1354–63. https://doi.org/10.1161/01.cir.93.7.1354.
Article CAS PubMed Google Scholar
Lupieri A, Smirnova NF, Solinhac R, Malet N, Benamar M, Saoudi A, et al. Smooth muscle cells-derived CXCL10 prevents endothelial healing through PI3Kγ-dependent T cells response. Cardiovasc Res. 2020;116(2):438–49. https://doi.org/10.1093/cvr/cvz122.
Article CAS PubMed Google Scholar
Leistner DM, Kränkel N, Meteva D, Abdelwahed YS, Seppelt C, Stähli BE, et al. Differential immunological signature at the culprit site distinguishes acute coronary syndrome with intact from acute coronary syndrome with ruptured fibrous cap: results from the prospective translational OPTICO-ACS study. Eur Heart J. 2020;41(37):3549–60. https://doi.org/10.1093/eurheartj/ehaa703.
Article CAS PubMed PubMed Central Google Scholar
Gisterå A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13(6):368–80. https://doi.org/10.1038/nrneph.2017.51.
Article CAS PubMed Google Scholar
Yin Y, Fang C, Jiang S, Wang J, Wang Y, Guo J, et al. Culprit and non-culprit plaque characteristics with vs. without a healed phenotype in patients with acute myocardial infarction caused by plaque erosion - A 3-vessel OCT study. Circ J. 2022;86(5):846–54. https://doi.org/10.1253/circj.CJ-21-0635.
Sekimoto T, Mori H, Koba S, Arai T, Matsukawa N, Sakai R, et al. Clinical features and lipid profiles of plaque erosion over lipid-rich plaque versus fibrous plaque in patients with acute coronary syndrome. Atherosclerosis. 2022;360:47–52. https://doi.org/10.1016/j.atherosclerosis.2022.07.008.
Article CAS PubMed Google Scholar
Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American heart association. Circulation. 1995;92(5):1355–74. https://doi.org/10.1161/01.cir.92.5.1355.
Article CAS PubMed Google Scholar
Libby P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc Res. 2021;117(13):2525–36. https://doi.org/10.1093/cvr/cvab303.
Article CAS PubMed PubMed Central Google Scholar
Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med. 1992;326(4):242–50. https://doi.org/10.1056/nejm199201233260406.
Article CAS PubMed Google Scholar
Kubo T, Imanishi T, Takarada S, Kuroi A, Ueno S, Yamano T, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50(10):933–9. https://doi.org/10.1016/j.jacc.2007.04.082.
Davies MJ. Acute coronary thrombosis–the role of plaque disruption and its initiation and prevention. Eur Heart J. 1995;16 Suppl L:3 7. https://doi.org/10.1093/eurheartj/16.suppl_l.3
Gisterå A, Ketelhuth DFJ. Lipid-driven immunometabolic responses in atherosclerosis. Curr Opin Lipidol. 2018;29(5):375–80. https://doi.org/10.1097/mol.0000000000000540.
Gisterå A, Klement ML, Polyzos KA, Mailer RKW, Duhlin A, Karlsson MCI, et al. Low-density lipoprotein-reactive T cells regulate plasma cholesterol levels and development of atherosclerosis in humanized hypercholesterolemic mice. Circulation. 2018;138(22):2513–26. https://doi.org/10.1161/circulationaha.118.034076.
Article PubMed PubMed Central Google Scholar
Gisterå A, Hermansson A, Strodthoff D, Klement ML, Hedin U, Fredrikson GN, et al. Vaccination against T-cell epitopes of native ApoB100 reduces vascular inflammation and disease in a humanized mouse model of atherosclerosis. J Intern Med. 2017;281(4):383–97. https://doi.org/10.1111/joim.12589.
Article CAS PubMed Google Scholar
Lorenzo C, Delgado P, Busse CE, Sanz-Bravo A, Martos-Folgado I, Bonzon-Kulichenko E, et al. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies. Nature. 2021;589(7841):287–92. https://doi.org/10.1038/s41586-020-2993-2.
Article CAS PubMed Google Scholar
Li J, Chen R, Zhou J, Wang Y, Zhao X, Liu C, et al. Atherosclerotic autoantigen ALDH4A1 as a novel immunological indicator for plaque erosion in patients with ST segment elevated myocardial infarction. Thromb Haemost. 2024;124(6):584–94. https://doi.org/10.1055/s-0043-1777265.
Gisterå A, Ketelhuth DFJ, Malin SG, Hansson GK. Animal models of atherosclerosis-supportive notes and tricks of the Trade. Circ Res. 2022;130(12):1869–87. https://doi.org/10.1161/circresaha.122.320263.
Kubo T, Maehara A, Mintz GS, Doi H, Tsujita K, Choi SY, et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J Am Coll Cardiol. 2010;55(15):1590–7. https://doi.org/10.1016/j.jacc.2009.07.078.
Article CAS PubMed Google Scholar
Kurihara O, Takano M, Yamamoto E, Yonetsu T, Kakuta T, Soeda T, et al. Seasonal variations in the pathogenesis of acute coronary syndromes. J Am Heart Assoc. 2020;9(13):e015579. https://doi.org/10.1161/jaha.119.015579.
Article PubMed PubMed Central Google Scholar
Araki M, Yonetsu T, Kurihara O, Nakajima A, Lee H, Soeda T, et al. Circadian variations in pathogenesis of ST-segment elevation myocardial infarction: an optical coherence tomography study. J Thromb Thrombolysis. 2021;51(2):379–87. https://doi.org/10.1007/s11239-020-02220-6.
Article CAS PubMed Google Scholar
Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75. https://doi.org/10.1161/01.atv.20.5.1262.
Article CAS PubMed Google Scholar
Vergallo R, Jang IK, Crea F. New prediction tools and treatment for ACS patients with plaque erosion. Atherosclerosis. 2021;318:45–51. https://doi.org/10.1016/j.atherosclerosis.2020.10.016.
Article CAS PubMed Google Scholar
Libby P, Pasterkamp G, Crea F, Jang IK. Reassessing the mechanisms of acute coronary syndromes. Circ Res. 2019;124(1):150–60. https://doi.org/10.1161/circresaha.118.311098.
Article CAS PubMed PubMed Central Google Scholar
Baaten C, Nagy M, Bergmeier W, Spronk HMH, van der Meijden PEJ. Platelet biology and function: plaque erosion vs. rupture. Eur Heart J. 2024;45(1):18–31. https://doi.org/10.1093/eurheartj/ehad720.
Article CAS PubMed Google Scholar
Niccoli G, Montone RA, Cataneo L, Cosentino N, Gramegna M, Refaat H, et al. Morphological-biohumoral correlations in acute coronary syndromes: pathogenetic implications. Int J Cardiol. 2014;171(3):463–6. https://doi.org/10.1016/j.ijcard.2013.12.238.
Comments (0)