Björkegren JLM, Lusis AJ. Atherosclerosis: recent developments. Cell. 2022;185(10):1630–45.
Article PubMed PubMed Central Google Scholar
Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol. 2006;47(8):C7–12.
Article CAS PubMed Google Scholar
Zhang S, Liu Y, Cao Y et al. Targeting the Microenvironment of Vulnerable atherosclerotic plaques: an emerging diagnosis and therapy strategy for atherosclerosis. Adv Mater. 2022, 34(29). https://doi.org/10.1002/adma.202110660
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Therapy. 2024, 9(1). https://doi.org/10.1038/s41392-024-01734-2
Yao ZT, Yang YM, Sun MM, et al. New insights into the interplay between long non-coding RNAs and RNA‐binding proteins in cancer. Cancer Commun. 2022;42(2):117–40.
Zhao L, Cao J, Hu K, et al. Retracted: RNA-binding protein RPS3 contributes to hepatocarcinogenesis by post-transcriptionally up-regulating SIRT1. Nucleic Acids Res. 2019;47(4):2011–28.
Article CAS PubMed Google Scholar
Jia K, Cheng H, Ma W et al. RNA Helicase DDX5 Maintains Cardiac Function by Regulating CamkIIδ Alternative Splicing. Circulation. 2024. https://doi.org/10.1161/CIRCULATIONAHA.123.064774
Castello A, Fischer B, Hentze MW, Preiss T. RNA-binding proteins in mendelian disease. Trends Genet. 2013;29(5):318–27.
Article CAS PubMed Google Scholar
Liu J, Cao X. RBP–RNA interactions in the control of autoimmunity and autoinflammation. Cell Res. 2023;33(2):97–115.
Article CAS PubMed PubMed Central Google Scholar
Tang Y, Li Z, Yang H et al. YB1 dephosphorylation attenuates atherosclerosis by promoting CCL2 mRNA decay. Front Cardiovasc Med. 2022, 9. https://doi.org/10.3389/fcvm.2022.945557
Simion V, Zhou H, Haemmig S et al. A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus. Nat Commun 2020, 11(1). https://doi.org/10.1038/s41467-020-19664-2
Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15(12):829–45.
Article CAS PubMed PubMed Central Google Scholar
Jin W, Brannan KW, Kapeli K, et al. HydRA: deep-learning models for predicting RNA-binding capacity from protein interaction association context and protein sequence. Mol Cell. 2023;83(14):2595–e26112511.
Article CAS PubMed Google Scholar
Ramakrishnan A, Janga SC. Human protein-RNA interaction network is highly stable across mammals. BMC Genomics. 2019, 20(S12). https://doi.org/10.1186/s12864-019-6330-9
Zhang C, Lee K-Y, Swanson MS, Darnell RB. Prediction of clustered RNA-binding protein motif sites in the mammalian genome. Nucleic Acids Res. 2013;41(14):6793–807.
Article CAS PubMed PubMed Central Google Scholar
Fu X, Zhai S, Yuan J. Endothelial HuR deletion reduces the expression of proatherogenic molecules and attenuates atherosclerosis. Int Immunopharmacol. 2018;65:248–55.
Article CAS PubMed Google Scholar
Hämmerle M, Gutschner T, Uckelmann H, et al. Posttranscriptional destabilization of the liver-specific long noncoding RNA HULC by the IGF2 mRNA-binding protein 1 (IGF2BP1). Hepatology. 2013;58(5):1703–12.
Siang DTC, Lim YC, Kyaw AMM et al. The RNA-binding protein HuR is a negative regulator in adipogenesis. Nat Commun 2020, 11(1).https://doi.org/10.1038/s41467-019-14001-8
Seufert L, Benzing T, Ignarski M, Müller R-U. RNA-binding proteins and their role in kidney disease. Nat Rev Nephrol. 2021;18(3):153–70.
Corley M, Burns MC, Yeo GW. How RNA-Binding proteins interact with RNA: molecules and mechanisms. Mol Cell. 2020;78(1):9–29.
Article CAS PubMed PubMed Central Google Scholar
Hentze MW, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 2018;19(5):327–41.
Article CAS PubMed Google Scholar
Beckmann BM, Horos R, Fischer B et al. The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat Commun. 2015, 6(1). https://doi.org/10.1038/ncomms10127
Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet. 2010;11(5):345–55.
Article CAS PubMed Google Scholar
Gatsiou A, Vlachogiannis N, Lunella FF, Sachse M, Stellos K. Adenosine-to-inosine RNA editing in Health and Disease. Antioxid Redox Signal. 2018;29(9):846–63.
Article CAS PubMed Google Scholar
Dorn LE, Tual-Chalot S, Stellos K, Accornero F. RNA epigenetics and cardiovascular diseases. J Mol Cell Cardiol. 2019;129:272–80.
Article CAS PubMed PubMed Central Google Scholar
Malbec L, Zhang T, Chen Y-S, et al. Dynamic methylome of internal mRNA N7-methylguanosine and its regulatory role in translation. Cell Res. 2019;29(11):927–41.
Article CAS PubMed PubMed Central Google Scholar
Hwang J, Sato H, Tang Y, Matsuda D, Maquat LE. UPF1 Association with the Cap-binding protein, CBP80, promotes nonsense-mediated mRNA decay at two distinct steps. Mol Cell. 2010;39(3):396–409.
Article CAS PubMed PubMed Central Google Scholar
Zhao Z, Qing Y, Dong L, et al. QKI shuttles internal m7G-modified transcripts into stress granules and modulates mRNA metabolism. Cell. 2023;186(15):3208–e32263227.
Article CAS PubMed PubMed Central Google Scholar
van den Hoogenhof MMG, Pinto YM, Creemers EE. RNA splicing. Circul Res. 2016;118(3):454–68.
Li JD, Taipale M, Blencowe BJ. Efficient, specific, and combinatorial control of endogenous exon splicing with dCasRx-RBM25. Mol Cell. 2024;84(13):2573–e25892575.
Article CAS PubMed Google Scholar
Monzón-Casanova E, Screen M, Díaz-Muñoz MD, et al. The RNA-binding protein PTBP1 is necessary for B cell selection in germinal centers. Nat Immunol. 2018;19(3):267–78.
Article PubMed PubMed Central Google Scholar
Lee Y, Rio DC. Mechanisms and regulation of alternative Pre-mRNA splicing. Annu Rev Biochem. 2015;84(1):291–323.
Article CAS PubMed PubMed Central Google Scholar
Jensen KB, Dredge BK, Stefani G, et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron. 2000;25(2):359–71.
Article CAS PubMed Google Scholar
Buratti E, Brindisi A, Pagani F, Baralle FE. Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR Intron 8 and causes skipping of Exon 9: a functional link with Disease Penetrance. Am J Hum Genet. 2004;74(6):1322–5.
Article CAS PubMed PubMed Central Google Scholar
Piersma SJ, Bangru S, Yoon J et al. NK cell expansion requires HuR and mediates control of solid tumors and long-term virus infection. J Exp Med 2023, 220(11).https://doi.org/10.1084/jem.20231154
Zhao W, Zhao J, Hou M, et al. HuR and TIA1/TIAL1 are involved in regulation of alternative splicing of SIRT1 Pre-mRNA. Int J Mol Sci. 2014;15(2):2946–58.
Article PubMed PubMed Central Google Scholar
Adamoski D, dos Reis M, Mafra L. ACP, : HuR controls glutaminase RNA metabolism. Nat Commun. 2024, 15(1). https://doi.org/10.1038/s41467-024-49874-x
Kumar K, Sinha SK, Maity U, Kirti PB, Kumar KRR. Insights into established and emerging roles of SR protein family in plants and animals. WIREs RNA 2022, 14(3). https://doi.org/10.1002/wrna.1763
Fu X-D, Ares M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet. 2014;15(10):689–701.
Comments (0)