Targeting Inflammatory Pathways in Atherosclerosis: Exploring New Opportunities for Treatment

Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25. https://doi.org/10.1038/nature10146.

Article  CAS  PubMed  Google Scholar 

Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43. https://doi.org/10.1161/hc0902.104353.

Article  CAS  PubMed  Google Scholar 

Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol. 2022;22(4):251–65. https://doi.org/10.1038/s41577-021-00584-1.

Article  CAS  PubMed  Google Scholar 

Zhao TX, Mallat Z. Targeting the immune system in atherosclerosis: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(13):1691–706. https://doi.org/10.1016/j.jacc.2018.12.083.

Article  CAS  PubMed  Google Scholar 

Ridker PM. Targeting inflammatory pathways for the treatment of cardiovascular disease. Eur Heart J. 2014;35(9):540–3. https://doi.org/10.1093/eurheartj/eht398.

Article  PubMed  Google Scholar 

Engelen SE, Robinson AJB, Zurke YX, Monaco C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat Rev Cardiol. 2022;19(8):522–42. https://doi.org/10.1038/s41569-021-00668-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crea F, Liuzzo G. Anti-inflammatory treatment of acute coronary syndromes: the need for precision medicine. Eur Heart J. 2016;37(30):2414–6. https://doi.org/10.1093/eurheartj/ehw207.

Article  PubMed  Google Scholar 

Tabas I, Lichtman AH. Monocyte-macrophages and T cells in atherosclerosis. Immunity. 2017;47(4):621–34. https://doi.org/10.1016/j.immuni.2017.09.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A. 1995;92(9):3893–7. https://doi.org/10.1073/pnas.92.9.3893.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruggio A, Pedicino D, Flego D, et al. Correlation between CD4+CD28null T lymphocytes, regulatory T cells and plaque rupture: an optical coherence tomography study in acute coronary syndromes. Int J Cardiol. 2019;276:289–92. https://doi.org/10.1016/j.ijcard.2018.08.101.

Article  PubMed  Google Scholar 

Deguchi JO, Aikawa M, Tung CH, et al. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation. 2006;114(1):55–62. https://doi.org/10.1161/CIRCULATIONAHA.106.619056.

Article  PubMed  Google Scholar 

Grebe A, Hoss F, Latz E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ Res. 2018;122(12):1722–40. https://doi.org/10.1161/CIRCRESAHA.118.311362.

Article  CAS  PubMed  Google Scholar 

Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61. https://doi.org/10.1038/nature08938.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pedicino D, Giglio AF, Ruggio A, et al. Inflammasome, T lymphocytes and innate-adaptive immunity crosstalk: role in cardiovascular disease and therapeutic perspectives. Thromb Haemost. 2018;118(8):1352–69. https://doi.org/10.1055/s-0038-1666860.

Article  PubMed  Google Scholar 

Liuzzo G, Biasucci LM, Gallimore JR, et al. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med. 1994;331(7):417–24. https://doi.org/10.1056/NEJM199408183310701.

Article  CAS  PubMed  Google Scholar 

Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–9. https://doi.org/10.1056/NEJM199704033361401.

Article  CAS  PubMed  Google Scholar 

Tang WHW, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84. https://doi.org/10.1056/NEJMoa1109400.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuster JJ, MacLauchlan S, Zuriaga MA, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355(6327):842–7. https://doi.org/10.1126/science.aag1381.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaiswal S, Natarajan P, Silver AJ, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377(2):111–21. https://doi.org/10.1056/NEJMoa1701719.

Article  PubMed  PubMed Central  Google Scholar 

Jain MK, Ridker PM. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005;4(12):977–87. https://doi.org/10.1038/nrd1901.

Article  CAS  PubMed  Google Scholar 

Ridker PM, Danielson E, Fonseca FAH, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–207. https://doi.org/10.1056/NEJMoa0807646.

Article  CAS  PubMed  Google Scholar 

Ridker PM, MacFadyen J, Libby P, Glynn RJ. Relation of baseline high-sensitivity c-reactive protein level to cardiovascular outcomes with rosuvastatin in the Justification for Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER). Am J Cardiol. 2010;106(2):204–9. https://doi.org/10.1016/j.amjcard.2010.03.018.

Article  CAS  PubMed  Google Scholar 

Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350(15):1495–504. https://doi.org/10.1056/NEJMoa040583.

Article  CAS  PubMed  Google Scholar 

Severino A, Zara C, Campioni M, et al. Atorvastatin inhibits the immediate-early response gene EGR1 and improves the functional pro of CD4+T-lymphocytes in acute coronary syndromes. Oncotarget. 2017;8(11):17529. https://doi.org/10.18632/oncotarget.15420.

Article  PubMed  PubMed Central  Google Scholar 

Karagiannis AD, Liu M, Toth PP, et al. Pleiotropic anti-atherosclerotic effects of PCSK9 inhibitors from molecular biology to clinical translation. Curr Atheroscler Rep. 2018;20(4):20. https://doi.org/10.1007/s11883-018-0718-x.

Article  CAS  PubMed  Google Scholar 

Ding Z, Pothineni NVK, Goel A, Lüscher TF, Mehta JL. PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovasc Res. 2020;116(5):908–15. https://doi.org/10.1093/cvr/cvz313.

Article  CAS  PubMed  Google Scholar 

Cao YX, Li S, Liu HH, Li JJ. Impact of PCSK9 monoclonal antibodies on circulating hs-CRP levels: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2018;8(9):e022348. https://doi.org/10.1136/bmjopen-2018-022348.

Article  PubMed  PubMed Central  Google Scholar 

Pradhan AD, Aday AW, Rose LM, Ridker PM. Residual inflammatory risk on treatment with PCSK9 inhibition and statin therapy. Circulation. 2018;138(2):141–9. https://doi.org/10.1161/CIRCULATIONAHA.118.034645.

Article  CAS 

Comments (0)

No login
gif