Ashina K, Tsubosaka Y, Nakamura T, Omori K, Kobayashi K, Hori M, Ozaki H, Murata T (2015) Histamine induces vascular hyperpermeability by increasing blood flow and endothelial barrier disruption in vivo. PLoS ONE 10:e0132367. https://doi.org/10.1371/journal.pone.0132367
Article CAS PubMed PubMed Central Google Scholar
Baran J, Sobiepanek A, Mazurkiewicz-Pisarek A, Rogalska M, Gryciuk A, Kuryk L, Abraham SN, Staniszewska M (2023) Mast cells as a target-a comprehensive review of recent therapeutic approaches. Cells 12:1187. https://doi.org/10.3390/cells12081187
Article CAS PubMed PubMed Central Google Scholar
Barer GR, Emery CJ, Mohammed FH, Mungall IP (1978) H1 and H2 histamine actions on lung vessels; their relevance to hypoxic vasoconstriction. Q J Exp Physiol Cogn Med Sci 63:157–169. https://doi.org/10.1113/expphysiol.1978.sp002428
Article CAS PubMed Google Scholar
Barni S, Liccioli G, Sarti L, Giovannini M, Novembre E, Mori F (2020) Immunoglobulin E (IgE)-mediated food allergy in children: epidemiology, pathogenesis, diagnosis, prevention, and management. Medicina 56:111. https://doi.org/10.3390/medicina56030111
Article PubMed PubMed Central Google Scholar
Burchett JR, Dailey JM, Kee SA, Pryor DT, Kotha A, Kankaria RA, Straus DB, Ryan JJ (2022) Targeting mast cells in allergic disease: current therapies and drug repurposing. Cells 11:3031. https://doi.org/10.3390/cells11193031
Article CAS PubMed PubMed Central Google Scholar
Chen YC, Chang YC, Chang HA, Lin YS, Tsao CW, Shen MR, Chiu WT (2017) Differential Ca2+ mobilization and mast cell degranulation by FcεRI- and GPCR-mediated signaling. Cell Calcium 67:31–39. https://doi.org/10.1016/j.ceca.2017.08.002
Article CAS PubMed Google Scholar
Conti P, Caraffa A, Ronconi G, Frydas I, Theoharides TC (2019) Recent progress on pathophysiology, inflammation and defense mechanism of mast cells against invading microbes: inhibitory effect of IL-37. Cent Eur J Immunol 44:447–454. https://doi.org/10.5114/ceji.2019.92807
Article CAS PubMed Google Scholar
Ebina K, Sakagami H, Yokota K, Kondo H (1994) Cloning and nucleotide sequence of cDNA encoding asp-hemolysin from Aspergillus Fumigatus. Biochim Biophys Acta 1219:148–150. https://doi.org/10.1016/0167-4781(94)90258-5
Article CAS PubMed Google Scholar
Galli SJ, Tsai M, Piliponsky AM (2008) The development of allergic inflammation. Nature 454:445–454. https://doi.org/10.1038/nature07204
Article CAS PubMed PubMed Central Google Scholar
Inoue A, Ishiguro J, Kitamura H, Arima N, Okutani M, Shuto A, Higashiyama S, Ohwada T, Arai H, Makide K, Aoki J (2012) TGFα shedding assay: an accurate and versatile method for detecting GPCR activation. Nat Methods 9:1021–1029. https://doi.org/10.1038/nmeth.2172
Article CAS PubMed Google Scholar
Johnston LK, Chien KB, Bryce PJ (2014) The immunology of food allergy. J Immunol 192:2529–2534. https://doi.org/10.4049/jimmunol.1303026
Article CAS PubMed Google Scholar
Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9:1215–1223. https://doi.org/10.1038/ni.f.216
Article CAS PubMed PubMed Central Google Scholar
Loh W, Tang MLK (2018) The epidemiology of food allergy in the global context. Int J Environ Res Public Health 15:2043. https://doi.org/10.3390/ijerph15092043
Article PubMed PubMed Central Google Scholar
Luo Z, Zhang S (2012) Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society. Chem Soc Rev 41:4736–4754. https://doi.org/10.1039/c2cs15360b
Article CAS PubMed Google Scholar
Moon TC, St Laurent CD, Morris KE, Marcet C, Yoshimura T, Sekar Y, Befus AD (2010) Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol 3:111–128. https://doi.org/10.1038/mi.2009.136
Article CAS PubMed Google Scholar
Muñoz-Cano R, Pascal M, Araujo G, Goikoetxea MJ, Valero AL, Picado C, Bartra J (2017) Mechanisms, cofactors, and augmenting factors involved in anaphylaxis. Front Immunol 8:1193. https://doi.org/10.3389/fimmu.2017.01193
Article CAS PubMed PubMed Central Google Scholar
Nishida K, Yamasaki S, Ito Y, Kabu K, Hattori K, Tezuka T, Nishizumi H, Kitamura D, Goitsuka R, Geha RS, Yamamoto T, Yagi T, Hirano T (2005) FcεRI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J Cell Biol 170:115–126. https://doi.org/10.1083/jcb.200501111
Article CAS PubMed PubMed Central Google Scholar
Osorio-Perez RM, Rodríguez-Manzo G, Espinosa-Riquer ZP, Cruz SL, González-Espinosa C (2023) Endocannabinoid modulation of allergic responses: focus on the control of FcεRI-mediated mast cell activation. Eur J Cell Biol 102:151324. https://doi.org/10.1016/j.ejcb.2023.151324
Article CAS PubMed Google Scholar
Pałgan K (2023) Mast cells and basophils in IgE-independent anaphylaxis. Int J Mol Sci 24:12802. https://doi.org/10.3390/ijms241612802
Article CAS PubMed PubMed Central Google Scholar
Park CH, Min SY, Yu HW, Kim K, Kim S, Lee HJ, Kim JH, Park YJ (2020) Effects of apigenin on RBL-2H3, RAW264.7, and HaCaT cells: anti-allergic, anti-inflammatory, and skin-protective activities. Int J Mol Sci 21:4620. https://doi.org/10.3390/ijms21134620
Article CAS PubMed PubMed Central Google Scholar
Pinho BR, Sousa C, Valentão P, Oliveira JM, Andrade PB (2014) Modulation of basophils’ degranulation and allergy-related enzymes by monomeric and dimeric naphthoquinones. PLoS ONE 9:e90122. https://doi.org/10.1371/journal.pone.0090122
Article CAS PubMed PubMed Central Google Scholar
Reber LL, Hernandez JD, Galli SJ (2017) The pathophysiology of anaphylaxis. J Allergy Clin Immunol 140:335–348. https://doi.org/10.1016/j.jaci.2017.06.003
Article CAS PubMed PubMed Central Google Scholar
Renz H, Allen KJ, Sicherer SH, Sampson HA, Lack G, Beyer K, Oettgen HC (2018) Food allergy. Nat Rev Dis Primers 4:17098. https://doi.org/10.1038/nrdp.2017.98
Sakai S, Sugawara T, Matsubara K, Hirata T (2009) Inhibitory effect of carotenoids on the degranulation of mast cells via suppression of antigen-induced aggregation of high affinity IgE receptors. J Biol Chem 284:28172–28179. https://doi.org/10.1074/jbc.M109.001099
Article CAS PubMed PubMed Central Google Scholar
Sato A, Ebina K (2017) A biotinylated peptide, BP21, as a novel potent anti-anaphylactic agent targeting platelet-activating factor. J Pept Sci 23:727–735. https://doi.org/10.1002/psc.3019
Article CAS PubMed Google Scholar
Sato A, Ebina K (2019) A biotinylated peptide, BP21, alleviates hypotension in anaphylactic mice. J Pept Sci 25:e3197. https://doi.org/10.1002/psc.3197
Article CAS PubMed Google Scholar
Sato A, Kumagai T, Aoki J, Ebina K (2012) Synthetic biotinylated peptide compounds derived from Asp-hemolysin: novel potent inhibitors of platelet-activating factor. Eur J Pharmacol 685:205–212. https://doi.org/10.1016/j.ejphar.2012.04.025
Comments (0)