Heterologous Production of Bacteriocin EMM1 from Pseudomonas Protegens and its Antimicrobial Activity against Multidrug-resistant Clinical Isolates

Anderson T (2023) The Tuberculosis vaccine challenge. Bull World Health Organ 101(05):303–304. https://doi.org/10.2471/BLT.23.020523

Article  Google Scholar 

Andrès E (2012) Cationic antimicrobial peptides in clinical development, with special focus on thanatin and heliomicin. Eur J Clin Microbiol Infect Dis 31(6):881–888. https://doi.org/10.1007/s10096-011-1430-8

Article  CAS  PubMed  Google Scholar 

Antoshina DV, Balandin SV, Bogdanov IV, Vershinina MA, Sheremeteva EV, Toropygin IY, Finkina EI, Ovchinnikova TV (2022) Antimicrobial activity and Immunomodulatory properties of Acidocin A, the pediocin-like bacteriocin with the non-canonical structure. Membranes 12(12):1253. https://doi.org/10.3390/membranes12121253

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bakhshandeh N, Khodashenas SA, Zargari M, Shahabi Majd N, Rezaei Kiasari Z (2022) Molecular cloning of DARPins G3 in pET28b expression Vector and optimization of the expression of this protein in Escherichia Coli. Res Mol Med 10(1):19–26. https://doi.org/10.32598/rmm.10.1.868.1

Article  CAS  Google Scholar 

Barreteau H, Tiouajni M, Graille M, Josseaume N, Bouhss A, Patin D, Blanot D, Fourgeaud M, Mainardi J-L, Arthur M, van Tilbeurgh H, Mengin-Lecreulx D, Touzé T (2012) Functional and structural characterization of PaeM, a colicin M-like Bacteriocin produced by Pseudomonas aeruginosa. J Biol Chem 287(44):37395–37405. https://doi.org/10.1074/jbc.M112.406439

Article  CAS  PubMed  PubMed Central  Google Scholar 

Browne K, Chakraborty S, Chen R, Willcox MD, Black DS, Walsh WR, Kumar N (2020) A new era of antibiotics: the clinical potential of antimicrobial peptides. Int J Mol Sci 21(19):7047. https://doi.org/10.3390/ijms21197047

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cebrián R, Martínez-García M, Fernández M, García F, Martínez-Bueno M, Valdivia E, Kuipers OP, Montalbán-López M, Maqueda M (2023) Advances in the preclinical characterization of the antimicrobial peptide AS-48. Front Microbiol 14. https://doi.org/10.3389/fmicb.2023.1110360

Cesa-Luna C, Baez A, Aguayo-Acosta A, Llano-Villarreal RC, Juárez-González VR, Gaytán P, Bustillos-Cristales MdelR, Rivera-Urbalejo A, Muñoz-Rojas J, Quintero-Hernández V (2020a) Growth inhibition of pathogenic microorganisms by Pseudomonas protegens EMM-1 and partial characterization of inhibitory substances. PLoS ONE 15(10):e0240545. https://doi.org/10.1371/journal.pone.0240545

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cesa-Luna C, Baez A, Quintero-Hernández V, De la Cruz-Enríquez J, Castañeda-Antonio MD, Muñoz-Rojas J (2020b) The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. Acta Biológica Colombiana 25(1):140–154. https://doi.org/10.15446/abc.v25n1.76867

Article  CAS  Google Scholar 

Cesa-luna C, Alatorre-cruz J-M, CarreÑo-lÓpez R, Quintero-hernÁndez V, Baez A (2021) Emerging applications of Bacteriocins as antimicrobials, anticancer drugs, and modulators of the gastrointestinal microbiota. Pol J Microbiol 70(2):143–159. https://doi.org/10.33073/pjm-2021-020

Article  PubMed  PubMed Central  Google Scholar 

Chang T-W, Lin Y-M, Wang C-F, Liao Y-D (2012) Outer membrane lipoprotein lpp is gram-negative bacterial cell surface receptor for Cationic antimicrobial peptides. J Biol Chem 287(1):418–428. https://doi.org/10.1074/jbc.M111.290361

Article  CAS  PubMed  Google Scholar 

CLSI (2020) Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing (30 th). Electronic

D S, Shyam Mohan AH, Rao SN (2020) Expression and purification of codon-optimized cre recombinase in E. Coli. Protein Exp Purif 167:105546. https://doi.org/10.1016/j.pep.2019.105546

Article  CAS  Google Scholar 

Dadgostar P (2019) Antimicrobial Resistance: implications and costs. Infect Drug Resist 12:3903–3910. https://doi.org/10.2147/IDR.S234610

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Giani A, Bovio F, Forcella M, Fusi P, Sello G, Di Gennaro P (2019) Identification of a bacteriocin-like compound from Lactobacillus plantarum with antimicrobial activity and effects on normal and cancerogenic human intestinal cells. AMB Express 9(1):88. https://doi.org/10.1186/s13568-019-0813-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garrido-Sanz D, Vesga P, Heiman CM, Altenried A, Keel C, Vacheron J (2023) Relation of pest insect-killing and soilborne pathogen-inhibition abilities to species diversification in environmental Pseudomonas protegens. ISME J 17(9):1369–1381. https://doi.org/10.1038/s41396-023-01451-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the exPASy server. In: Walker, J.M. (eds) The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-890-0:571

Ghequire MGK, Öztürk B, De Mot R (2018) Lectin-Like Bacteriocins. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02706

Guryanova SV (2023) Immunomodulation, Bioavailability and Safety of Bacteriocins. Life 13(7):1521. https://doi.org/10.3390/life13071521

Article  CAS  PubMed  PubMed Central  Google Scholar 

Höfte M (2021) The use of Pseudomonas spp. as bacterial biocontrol agents to control plant diseases. 301–374. https://doi.org/10.19103/AS.2021.0093.11

Hong MJ, Kim MK, Park Y (2021) Comparative antimicrobial activity of Hp404 peptide and its analogs against Acinetobacter baumannii. Int J Mol Sci 22(11):5540. https://doi.org/10.3390/ijms22115540

Article  CAS  PubMed  PubMed Central  Google Scholar 

Humphries R, Bobenchik AM, Hindler JA, Schuetz AN (2021) Overview of changes to the Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st Edition. J Clin Microbiol 59(12). https://doi.org/10.1128/JCM.00213-21

Jit M, Ng DHL, Luangasanatip N, Sandmann F, Atkins KE, Robotham JV, Pouwels KB (2020) Quantifying the economic cost of antibiotic resistance and the impact of related interventions: rapid methodological review, conceptual framework and recommendations for future studies. BMC Med 18(1):38. https://doi.org/10.1186/s12916-020-1507-2

Article  PubMed  PubMed Central  Google Scholar 

Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS (2016) Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog 95:32–42. https://doi.org/10.1016/j.micpath.2016.02.009

Article  CAS  PubMed  Google Scholar 

Kim S, Jin J-S, Lee D-W, Kim J (2020a) Antibacterial activities of and biofilm removal by Ablysin, an endogenous lysozyme-like protein originated from Acinetobacter baumannii 1656-2. J Global Antimicrob Resist 23:297–302. https://doi.org/10.1016/j.jgar.2020.09.017

Article  Google Scholar 

Kim S, Lee D-W, Jin J-S, Kim J (2020b) Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa. J Global Antimicrob Resist 22:32–39. https://doi.org/10.1016/j.jgar.2020.01.005

Article  Google Scholar 

Lautenbach V, Hosseinpour S, Peukert W (2021) Isoelectric Point of Proteins at Hydrophobic Interfaces. Front Chem 9. https://doi.org/10.3389/fchem.2021.712978

Leber Amy L (2016) Preparation of Routine Media and reagents used in Antimicrobial susceptibility testing. Clinical Microbiology procedures Handbook (pp. 5.20.1.1–5.20.3.10). ASM. https://doi.org/10.1128/9781555818814.ch5.20.1

Lénon M, Ke N, Ren G, Meuser ME, Loll PJ, Riggs P, Berkmen M (2021) A useful epitope tag derived from maltose binding protein. Protein Sci 30(6):1235–1246. https://doi.org/10.1002/pro.4088

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo X, Ding L, Ye X, Zhu W, Zhang K, Li F, Jiang H, Zhao Z, Chen Z (2021) An Smp43-Derived short-chain α-Helical peptide displays a unique sequence and possesses antimicrobial activity against both gram-positive and Gram-negative Bacteria. Toxins 13(5):343. https://doi.org/10.3390/toxins13050343

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madhi KS, Khudor MH, Othman RM (2023) Cloning and expression of Synthetic Plantaricin F Gene. J Pure Appl Microbiol 17(1):289–297. https://doi.org/10.22207/JPAM.17.1.18

Article  Google Scholar 

Madi-Moussa D, Coucheney F, Drider D (2021) Expression of five class II bacteriocins with activity against Escherichia coli in Lacticaseibacillus Paracasei CNCM I-5369, and in a heterologous host. Biotechnol Rep 30:e00632. https://doi.org/10.1016/j.btre.2021.e00632

Article  CAS  Google Scholar 

McCaughey LC, Grinter R, Josts I, Roszak AW, Waløen KI, Cogdell RJ, Milner J, Evans T, Kelly S, Tucker NP, Byron O, Smith B, Walker D (2014) Lectin-like Bacteriocins from Pseudomonas Spp. Utilise D-Rhamnose containing Lipopolysaccharide as a Cellular receptor. PLoS Pathog 10(2):e1003898. https://doi.org/10.1371/journal.ppat.1003898

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng F, Zhao H, Zhang C, Lu F, Bie X, Lu Z (2016)

Comments (0)

No login
gif