Study on the classification of sleep stages in EEG signals based on DoubleLinkSleepCLNet

Altevogt BM, Colten HR (2006) Sleep disorders and sleep deprivation: an unmet public health problem. https://doi.org/10.17226/11617

Dahl RE, Lewin DS (2002) Pathways to adolescent health sleep regulation and behavior. J Adolesc Health 31:175–184. https://doi.org/10.1016/S1054-139X(02)00506-2

Article  PubMed  Google Scholar 

Webb WB, Agnew HW Jr (1970) Sleep stage characteristics of long and short sleepers. Science 168:146–147. https://doi.org/10.1126/science.168.3927.146

Article  CAS  PubMed  Google Scholar 

Chesson AL Jr, Ferber RA, Fry JM, Grigg-Damberger M, Hartse KM, Hurwitz TD, Johnson S, Kader GA, Littner M, Rosen G (1997) The indications for polysomnography and related procedures. Sleep 20:423–487. https://doi.org/10.1093/sleep/20.6.423

Article  PubMed  Google Scholar 

Douglas NJ, Thomas S, Jan MA (1992) Clinical value of polysomnography. Lancet 339:347–350. https://doi.org/10.1016/0140-6736(92)91660-Z

Article  CAS  PubMed  Google Scholar 

Rauscher H, Popp W, Zwick H (1991) Computerized detection of respiratory events during sleep from rapid increases in oxyhemoglobin saturation. Lung 169:335–342. https://doi.org/10.1007/BF02714170

Article  CAS  PubMed  Google Scholar 

Fonod R (2022) DeepSleep 2.0: automated sleep arousal segmentation via deep learning. AI 3:164–179. https://doi.org/10.3390/ai3010010

Article  Google Scholar 

Ryan PJ, Hilton MF, Boldy DA, Evans A, Bradbury S, Sapiano S, Prowse K, Cayton RM (1995) Validation of British Thoracic Society guidelines for the diagnosis of the sleep apnoea/hypopnoea syndrome: can polysomnography be avoided? Thorax 50(9):972–975. https://doi.org/10.1136/thx.50.9.972

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dement W, Kleitman N (1957) Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr Clin Neurophysiol 9(4):673–690. https://doi.org/10.1016/0013-4694(57)90088-3

Article  CAS  PubMed  Google Scholar 

Drinnan MJ, Murray A, White JES, Smithson AJ, Griffiths CJ, Gibson GJ (1996) Automated recognition of EEG changes accompanying arousal in respiratory sleep disorders. Sleep 19(4):296–303. https://doi.org/10.1093/sleep/19.4.296

Article  CAS  PubMed  Google Scholar 

Mourtazaev MS, Kemp B, Zwinderman AH, Kamphuisen HAC (1995) Age and gender affect different characteristics of slow waves in the sleep EEG. Sleep 18(7):557–564. https://doi.org/10.1093/sleep/18.7.557

Article  CAS  PubMed  Google Scholar 

Kemp B, Zwinderman AH, Tuk B, Kamphuisen HAC, Oberye JJL (2000) Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans Biomed Eng 47(9):1185–1194. https://doi.org/10.1109/10.867928

Article  CAS  PubMed  Google Scholar 

Álvarez-Estévez D, Moret-Bonillo V (2010) Identification of electroencephalographic arousals in multichannel sleep recordings. IEEE Trans Biomed Eng 58(1):54–63. https://doi.org/10.1109/TBME.2010.2075930

Article  PubMed  Google Scholar 

Bhattacharjee T, Das D, Alam S, Rao A, Ghosh PK, Lohani AR, Banerjee R, Choudhury AD, Pal A (2018) SleepTight: identifying sleep arousals using inter and intra-relation of multimodal signals. 45:1–4. https://doi.org/10.22489/CinC.2018.245

Almutairi H, Hassan GM, Datta A (2023) Classification of sleep stages from EEG, EOG and EMG signals by SSNet. https://doi.org/10.48550/arXiv.2307.05373. arXiv preprint arXiv:230705373

Michielli N, Acharya UR, Molinari F (2019) Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals. Comput Biol Med 106:71–81. https://doi.org/10.1016/j.compbiomed.2019.01.013

Article  PubMed  Google Scholar 

Craik A, He Y, Contreras-Vidal JL (2019) Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng 16(3):031001. https://sci-hub.se/https://doi.org/10.1088/1741-2552/ab0ab5

Article  PubMed  Google Scholar 

Varga B, Görög M, Hajas P (2018) Using auxiliary loss to improve sleep arousal detection with neural network. 2018 Computing in Cardiology Conference (CinC) 45:1–4 https://doi.org/10.22489/CinC.2018.247

Cheadle C, Vawter MP, Freed WJ, Becker KG (2003) Analysis of microarray data using Z score transformation. J Mol Diagn 5(2):73–81. https://doi.org/10.1016/S1525-1578(10)60455-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berrueta LA, Alonso-Salces RM, Héberger K (2007) Supervised pattern recognition in food analysis. J Chromatogr A 1158(1–2):196–214. https://doi.org/10.1016/j.chroma.2007.05.024

Article  CAS  PubMed  Google Scholar 

Alavi-Sereshki M, Prabhakar J (1972) A tabulation of Hilbert transforms for electrical engineers. IEEE Trans Commun 20(6):1194–1198. https://doi.org/10.1109/TCOM.1972.1091293

Article  Google Scholar 

Ma Y, Huang Z, Su J, Shi H, Wang D, Jia S, Li W (2023) A Multi-channel Feature Fusion CNN-Bi-LSTM Epilepsy EEG classification and prediction model based on attention mechanism. IEEE Access 11:62855–62864. https://doi.org/10.1109/ACCESS.2023.3287927

Article  Google Scholar 

Timotius IK, Miaou S-G (2010) Arithmetic means of accuracies: A classifier performance measurement for imbalanced data set. 2010 International Conference on Audio, Language and Image Processing: 1244–1251. https://doi.org/10.1109/ICALIP.2010.5685124

Lo M-T, Tsai P-H, Lin P-F, Lin C, Hsin YL (2009) The nonlinear and nonstationary properties in EEG signals: probing the complex fluctuations by Hilbert–Huang transform. Adv Adapt Data Anal 1(03):461–482. https://doi.org/10.1142/S1793536909000199

Article  Google Scholar 

Freeman WJ (2007) Hilbert transform for brain waves. Scholarpedia 2(1):1338. https://doi.org/10.4249/scholarpedia.1338

Article  Google Scholar 

Yin G, Chang Y, Zhao Y, Liu C, Yin M, Fu Y, Shi D, Wang L, Jin L, Huang J (2023) Automatic recognition of schizophrenia from brain-network features using graph convolutional neural network. Asian J Psychiatry 87:103687. https://doi.org/10.1016/j.ajp.2023.103687

Article  Google Scholar 

Garcia CI, Grasso F, Luchetta A, Piccirilli MC, Paolucci L, Talluri G (2020) A comparison of power quality disturbance detection and classification methods using CNN, LSTM and CNN-LSTM. Appl Sci 10(19):6755. https://doi.org/10.3390/app10196755

Article  CAS  Google Scholar 

Luan Y, Lin S (2019) Research on text classification based on CNN and LSTM. 2019 IEEE Int Conf Artif Intell Comput Appl (ICAICA) 352–355. https://doi.org/10.1109/ICAICA.2019.8873454

Comments (0)

No login
gif