Liu CH, Liu H, Ge B (2017) Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol 14:963–975. https://doi.org/10.1038/cmi.2017.88
Article CAS PubMed PubMed Central Google Scholar
Ahmad J, Khubaib M, Sheikh JA, Pancsa R, Kumar S, Srinivasan A, Babu MM, Hasnain SE, Ehtesham NZ (2020) Disorder-to-order transition in PE-PPE proteins of Mycobacterium tuberculosis augments the pro-pathogen immune response. FEBS Open Bio 10:70–85. https://doi.org/10.1002/2211-5463.12749
Article CAS PubMed Google Scholar
Ates LS (2020) New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Mol Microbiol 113. https://doi.org/10.1111/mmi.14409
Chai Q, Wang X, Qiang L, Zhang Y, Ge P, Lu Z, Zhong Y, Li B, Wang J, Zhang L, Zhou D, Li W, Dong W, Pang Y, Gao GF, Liu CH (2019) A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat Commun 10:1973. https://doi.org/10.1038/s41467-019-09955-8
Article CAS PubMed PubMed Central Google Scholar
Ahmad J, Farhana A, Pancsa R, Arora SK, Srinivasan A, Tyagi AK, Babu MM, Ehtesham NZ, Hasnain SE (2018) Contrasting Function of Structured N-Terminal and Unstructured C-Terminal Segments of Mycobacterium tuberculosis PPE37 Protein., MBio. 9 https://doi.org/10.1128/mBio.01712-17
Srivastava S, Battu MB, Khan MZ, Nandicoori VK, Mukhopadhyay S (2019) Mycobacterium tuberculosis PPE2 protein interacts with p67(phox) and inhibits reactive oxygen species production. J Immunol 203:1218–1229. https://doi.org/10.4049/jimmunol.1801143
Article CAS PubMed Google Scholar
Medha, Priyanka P, Bhatt S, Sharma M, Sharma (2022) Role of C-terminal domain of Mycobacterium tuberculosis PE6 (Rv0335c) protein in host mitochondrial stress and macrophage apoptosis, apoptosis. https://doi.org/10.1007/s10495-022-01778-1
Sharma S, Schiller MR (2019) The carboxy-terminus, a key regulator of protein function. Crit Rev Biochem Mol Biol 54:85–102. https://doi.org/10.1080/10409238.2019.1586828
Article CAS PubMed PubMed Central Google Scholar
Gómez-Fernández JC (2014) Functions of the C-terminal domains of apoptosis-related proteins of the Bcl-2 family. Chem Phys Lipids 183:77–90. https://doi.org/10.1016/j.chemphyslip.2014.05.003
Article CAS PubMed Google Scholar
Peng Z, Xue B, Kurgan L, Uversky VN (2013) Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death Differ 20:1257–1267. https://doi.org/10.1038/cdd.2013.65
Article CAS PubMed PubMed Central Google Scholar
Wang J, Ge P, Lei Z, Lu Z, Qiang L, Chai Q, Zhang Y, Zhao D, Li B, Su J, Peng R, Pang Y, Shi Y, Zhang Y, Gao GF, Qiu X, Liu CH (2021) Mycobacterium tuberculosis protein kinase G acts as an unusual ubiquitinating enzyme to impair host immunity. EMBO Rep 22:e52175. https://doi.org/10.15252/embr.202052175
Article CAS PubMed PubMed Central Google Scholar
Lucattini R, Likić VA, Lithgow T (2004) Bacterial proteins predisposed for targeting to Mitochondria. Mol Biol Evol 21:652–658. https://doi.org/10.1093/molbev/msh058
Article CAS PubMed Google Scholar
Grover S, Sharma T, Singh Y, Kohli S, Singh MPA, Semmler T, Wieler LH, Tedin K, Ehtesham NZ, Hasnain SE (2018) The PGRS Domain of Mycobacterium tuberculosis PE_PGRS Protein Rv0297 Is Involved in Endoplasmic Reticulum Stress-Mediated Apoptosis through Toll-Like Receptor 4., MBio. 9 https://doi.org/10.1128/mBio.01017-18
Cadieux N, Parra M, Cohen H, Maric D, Morris SL, Brennan MJ (2011) Induction of cell death after localization to the host cell mitochondria by the Mycobacterium tuberculosis PE-PGRS33 protein. Microbiology 157:793–804. https://doi.org/10.1099/mic.0.041996-0
Article CAS PubMed PubMed Central Google Scholar
Sharma N, Shariq M, Quadir N, Singh J, Sheikh JA, Hasnain SE, Ehtesham NZ (2021) Mycobacterium tuberculosis protein PE6 (Rv0335c), a Novel TLR4 agonist, evokes an inflammatory response and modulates the cell death pathways in macrophages to enhance intracellular survival. Front Immunol 12:696491. https://doi.org/10.3389/fimmu.2021.696491
Article CAS PubMed PubMed Central Google Scholar
Priyanka, Medha P, Bhatt H, Joshi S, Sharma M, Sharma (2023) Late stage specific Rv0109 (PE_PGRS1) protein of Mycobacterium tuberculosis induces mitochondria mediated macrophage apoptosis. Microb Pathog 176:106021. https://doi.org/10.1016/j.micpath.2023.106021
Article CAS PubMed Google Scholar
Martin M, DeVisch A, Boudehen Y-M, Barthe P, Turapov O, Aydogan T, Heriaud L, Gracy J, Mukamolova GV, Letourneur F, Cohen-Gonsaud M (2021) A Mycobacterium tuberculosis effector targets mitochondrion, controls energy metabolism and limits cytochrome c exit, BioRxiv. 2021.01.31.428746. https://doi.org/10.1101/2021.01.31.428746
Duan L, Gan H, Golan DE, Remold HG (2002) Critical role of mitochondrial damage in determining outcome of macrophage infection with Mycobacterium tuberculosis. J Immunol 169:5181–5187. https://doi.org/10.4049/jimmunol.169.9.5181
Jamwal S, Midha MK, Verma HN, Basu A, Rao KVS, Manivel V (2013) Characterizing virulence-specific perturbations in the mitochondrial function of macrophages infected with Mycobacterium tuberculosis. Sci Rep 3. https://doi.org/10.1038/srep01328
Lorenzo HK, Susin SA (2004) Mitochondrial effectors in caspase-independent cell death. FEBS Lett 557:14–20. https://doi.org/10.1016/s0014-5793(03)01464-9
Article CAS PubMed Google Scholar
Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950. https://doi.org/10.1152/physrev.00026.2013
Article CAS PubMed PubMed Central Google Scholar
Zhu Y, Wan C, Lin J, Hammes H (2022) Mitochondrial Oxidative Stress and Cell Death in Podocytopathies
Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629. https://doi.org/10.1126/science.1099320
Article CAS PubMed Google Scholar
Medha, Priyanka S, Sharma M, Sharma (2023) PE_PGRS45 (Rv2615c) protein of Mycobacterium tuberculosis perturbs mitochondria of macrophages. Immunol Cell Biol. https://doi.org/10.1111/imcb.12677
Mossmann D, Meisinger C, Vögtle F-N (2012) Processing of mitochondrial presequences. Biochim Biophys Acta 1819:1098–1106. https://doi.org/10.1016/j.bbagrm.2011.11.007
Article CAS PubMed Google Scholar
Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:37–49. https://doi.org/10.1016/j.cell.2008.11.014
Article CAS PubMed PubMed Central Google Scholar
Daniel J, Kapoor N, Sirakova T, Sinha R, Kolattukudy P (2016) The perilipin-like PPE15 protein in Mycobacterium tuberculosis is required for triacylglycerol accumulation under dormancy-inducing conditions. Mol Microbiol 101:784–794. https://doi.org/10.1111/mmi.13422
Article CAS PubMed PubMed Central Google Scholar
Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, Bileschi ML, Bork P, Bridge A, Colwell L, Gough J, Haft DH, Letunić I, Marchler-Bauer A, Mi H, Natale DA, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Bateman A (2023) Nucleic Acids Res 51:D418–D427 InterPro in 2022. https://doi.org/10.1093/nar/gkac993
Article CAS PubMed Google Scholar
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673
Article CAS PubMed PubMed Central Google Scholar
Qian J, Chen R, Wang H, Zhang X (2020) Role of the PE/PPE family in Host-Pathogen interactions and prospects for Anti-tuberculosis Vaccine and Diagnostic Tool Design. Front Cell Infect Microbiol 10:594288. https://doi.org/10.3389/fcimb.2020.594288
Article CAS PubMed PubMed Central Google Scholar
Danelishvili L, Everman J, Bermudez LE Mycobacterium tuberculosis PPE68 and Rv2626c genes contribute to the host cell necrosis and bacterial escape from macrophages. Virulence 7 (2016) 23–32. https://doi.org/10.1080/21505594.2015.1102832
Joseph S, Yuen A, Singh V, Hmama Z (2017) Mycobacterium tuberculosis Cpn60.2 (GroEL2) blocks macrophage apoptosis via interaction with mitochondrial mortalin. Biol Open 6:481–488. https://doi.org/10.1242/bio.023119
Comments (0)