Stress, Vascular Smooth Muscle Cell Phenotype and Atherosclerosis: Novel Insight into Smooth Muscle Cell Phenotypic Transition in Atherosclerosis

Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:2982–3021.

Article  PubMed  PubMed Central  Google Scholar 

Yu Q, Li W, Jin R, Yu S, Xie D, Zheng X, et al. PI3Kγ (Phosphoinositide 3-Kinase γ) regulates vascular smooth muscle cell phenotypic modulation and neointimal formation through CREB (Cyclic AMP-Response Element Binding Protein)/YAP (Yes-Associated Protein) signaling. Arterioscler Thromb Vasc Biol. 2019;39:e91-105.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan H, Ho SE, Xue C, Cui J, Johanson QS, Sachs N, et al. Atherosclerosis is a smooth muscle cell-driven tumor-like disease. Circulation. 2024. https://doi.org/10.1161/CIRCULATIONAHA.123.067587

Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84:767–801.

Article  CAS  PubMed  Google Scholar 

Wang Z-Y, Cheng J, Liu B, Xie F, Li C-L, Qiao W, et al. Protein deglycase DJ-1 deficiency induces phenotypic transitioning in vascular smooth muscle cells and exacerbates atherosclerotic plaque instability. J Cell Mol Med. 2021;25:2816–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai M, Zhu X, Zeng S, Liu Q, Hu R, Huang L, et al. Dexmedetomidine protects cells from Angiotensin II-induced smooth muscle cell phenotype transition and endothelial cell dysfunction. Cell Cycle. 2023;22:450–63.

Article  CAS  PubMed  Google Scholar 

Yang L, Gao L, Nickel T, Yang J, Zhou J, Gilbertsen A, et al. Lactate Promotes Synthetic Phenotype in Vascular Smooth Muscle Cells. Circ Res. 2017;121:1251–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rong JX, Shapiro M, Trogan E, Fisher EA. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci. 2003;100:13531–6.

Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21:628–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Proudfoot D, Davies JD, Skepper JN, Weissberg PL, Shanahan CM. Acetylated low-density lipoprotein stimulates human vascular smooth muscle cell calcification by promoting osteoblastic differentiation and inhibiting phagocytosis. Circulation. 2002;106:3044–50.

Article  CAS  PubMed  Google Scholar 

Hayashi K, Nakamura S, Nishida W, Sobue K. Bone morphogenetic protein-induced MSX1 and MSX2 inhibit myocardin-dependent smooth muscle gene transcription. Mol Cell Biol. 2006;26:9456–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaffe IZ, Tintut Y, Newfell BG, Demer LL, Mendelsohn ME. Mineralocorticoid receptor activation promotes vascular cell calcification. Arterioscler Thromb Vasc Biol. 2007;27:799–805.

Article  CAS  PubMed  Google Scholar 

Furmanik M, van Gorp R, Whitehead M, Ahmad S, Bordoloi J, Kapustin A, et al. Endoplasmic Reticulum Stress Mediates Vascular Smooth Muscle Cell Calcification via Increased Release of Grp78 (Glucose-Regulated Protein, 78 kDa)-Loaded Extracellular Vesicles. Arterioscler Thromb Vasc Biol. 2021;41:898–914.

Article  CAS  PubMed  Google Scholar 

••Alencar GF, Owsiany KM, Karnewar S, Sukhavasi K, Mocci G, Nguyen AT, et al. Stem Cell Pluripotency Genes Klf4 and Oct4 Regulate Complex SMC Phenotypic Changes Critical in Late-Stage Atherosclerotic Lesion Pathogenesis. Circulation. 2020;142:2045–59. Finding from this study first suggest the presence of Lgals3+ VSMC, which is regarded as "pioneer" cell phenotype that subsequently gives rise to at least 3 other SMC phenotypes within advanced lesions.

Wirka RC, Wagh D, Paik DT, Pjanic M, Nguyen T, Miller CL, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med. 2019;25:1280–9.

Shen Y, Xu L-R, Yan D, Zhou M, Han T-L, Lu C, et al. BMAL1 modulates smooth muscle cells phenotypic transition towards fibroblast-like cells and stabilizes atherosclerotic plaques by upregulating YAP1. Biochim Biophys Acta Mol Basis Dis. 2022;1868:166450.

Article  CAS  PubMed  Google Scholar 

Tabas I, Williams KJ, Borén J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116:1832–44.

Article  CAS  PubMed  Google Scholar 

Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation. 2014;129:1551–9.

Article  CAS  PubMed  Google Scholar 

Vengrenyuk Y, Nishi H, Long X, Ouimet M, Savji N, Martinez FO, et al. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler Thromb Vasc Biol. 2015;35:535–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chamley-Campbell J, Campbell GR, Ross R. The smooth muscle cell in culture. Physiol Rev. 1979;59:1–61.

Article  CAS  PubMed  Google Scholar 

Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res. 2020;116:1254–74.

Article  CAS  PubMed  Google Scholar 

Pryma CS, Ortega C, Dubland JA, Francis GA. Pathways of smooth muscle foam cell formation in atherosclerosis. Curr Opin Lipidol. 2019;30:117–24.

Article  CAS  PubMed  Google Scholar 

Wang Y, Dubland JA, Allahverdian S, Asonye E, Sahin B, Jaw JE, et al. Smooth muscle cells contribute the majority of foam cells in ApoE (Apolipoprotein E)-deficient mouse atherosclerosis. Arterioscler Thromb Vasc Biol. 2019;39:876–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oladosu O, Esobi IC, Powell RR, Bruce T, Stamatikos A. Dissecting the impact of vascular smooth muscle cell ABCA1 versus ABCG1 expression on cholesterol efflux and macrophage-like cell transdifferentiation: the role of SR-BI. J Cardiovasc Dev Dis. 2023;10:416.

CAS  PubMed  PubMed Central  Google Scholar 

Hiltunen TP, Luoma JS, Nikkari T, Ylä-Herttuala S. Expression of LDL receptor, VLDL receptor, LDL receptor-related protein, and scavenger receptor in rabbit atherosclerotic lesions: marked induction of scavenger receptor and VLDL receptor expression during lesion development. Circulation. 1998;97:1079–86.

Article  CAS  PubMed  Google Scholar 

Llorente-Cortés V, Otero-Viñas M, Sánchez S, Rodríguez C, Badimon L. Low-density lipoprotein upregulates low-density lipoprotein receptor-related protein expression in vascular smooth muscle cells: possible involvement of sterol regulatory element binding protein-2-dependent mechanism. Circulation. 2002;106:3104–10.

Article  PubMed  Google Scholar 

Costales P, Aledo R, Vérnia S, Das A, Shah VH, Casado M, et al. Selective role of sterol regulatory element binding protein isoforms in aggregated LDL-induced vascular low density lipoprotein receptor-related protein-1 expression. Atherosclerosis. 2010;213:458–68.

Article  CAS  PubMed  Google Scholar 

Llorente-Cortés V, Costales P, Bernués J, Camino-Lopez S, Badimon L. Sterol regulatory element-binding protein-2 negatively regulates low density lipoprotein receptor-related protein transcription. J Mol Biol. 2006;359:950–60.

Article  PubMed  Google Scholar 

Costales P, Fuentes-Prior P, Castellano J, Revuelta-Lopez E, Corral-Rodríguez MÁ, Nasarre L, et al. K Domain CR9 of low density lipoprotein (LDL) receptor-related protein 1 (LRP1) Is critical for aggregated LDL-induced foam cell formation from human vascular smooth muscle cells. J Biol Chem. 2015;290:14852–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dissmore T, Seye CI, Medeiros DM, Weisman GA, Bradford B, Mamedova L. The P2Y2 receptor mediates uptake of matrix-retained and aggregated low density lipoprotein in primary vascular smooth muscle cells. Atherosclerosis. 2016;252:128–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Argmann CA, Sawyez CG, Li S, Nong Z, Hegele RA, Pickering JG, et al. Human smooth muscle cell subpopulations differentially accumulate cholesteryl ester when exposed to native and oxidized lipoproteins. Arterioscler Thromb Vasc Biol. 2004;24:1290–6.

Article  CAS  PubMed 

Comments (0)

No login
gif