• Luca AC, David SG, David AG, Țarcă V, Pădureț I-A, Mîndru DE, Roșu ST, Roșu EV, Adumitrăchioaiei H, Bernic J, Cojocaru E, Țarcă E. Atherosclerosis from Newborn to Adult and ;mdash;Epidemiology, Pathological Aspects, and Risk Factors. Life. 2023;13(10):2056. This review offers a thorough summary of the current knowledge about the development and advancement of atherosclerosis in childhood, as well as the identification of established risk factors for atherosclerotic cardiovascular disease in children.
Article CAS PubMed PubMed Central Google Scholar
Pahwa R, Jialal I. Atherosclerosis, StatPearls, StatPearls Publishing Copyright © 2023. Treasure Island (FL): StatPearls Publishing LLC.; 2023.
Li Z, Zhao Y, Suguro S, Suguro R. MicroRNAs Regulate Function in Atherosclerosis and Clinical Implications. Oxid Med Cell Longev. 2023;2023:2561509.
Article PubMed PubMed Central Google Scholar
Fan J, Watanabe T. Atherosclerosis: Known and unknown. Pathol Int. 2022;72(3):151–60.
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, Benito-Vicente A, Martín C. Pathophysiology of Atherosclerosis. Int J Mol Sci. 2022;23(6):3346.
Article CAS PubMed PubMed Central Google Scholar
Maegdefessel L, Boon RA, Dimmeler S. Noncoding RNAs in the Vasculature: Basic Mechanisms and Therapeutic Perspectives. Arterioscler Thromb Vasc Biol. 2024;44(1):3–6.
Article CAS PubMed Google Scholar
Bian X, Peng H, Wang Y, Guo H, Shi G. MicroRNA-22-3p alleviates atherosclerosis by mediating macrophage M2 polarization as well as inhibiting NLRP3 activation. J Int Med Res. 2023;51(10):03000605231197071.
Article CAS PubMed PubMed Central Google Scholar
P.J. Dexheimer, L. Cochella, MicroRNAs: From Mechanism to Organism, Front Cell Dev Biol. 8 (2020). https://doi.org/10.3389/fcell.2020.00409.
Y. Runting, L. Hongyu, C. Yixing, Z. Jia, L. Geng, G. Qian, K. Xinyu, Z. Jiemin, W. Yuan, The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis, Current Med Chem. (2024).
Ehsani S, Mard-Soltani M, Ahmadpour F, Shahsavari G. Association between miR-138-5p, miR-132-3p, SIRT1, STAT3, and CD36 and atherogenic indices in blood mononuclear cells from patients with atherosclerosis. Egypt J Med Human Gen. 2023;24(1):84.
Cui M, Wang H, Yao X, Zhang D, Xie Y, Cui R, Zhang X. Circulating microRNAs in cancer: potential and challenge. Front Genet. 2019;10:626.
Article CAS PubMed PubMed Central Google Scholar
Erturk E, Onur OE, Akgun O, Tuna G, Yildiz Y, Ari F. Mitochondrial miRNAs (MitomiRs): Their potential roles in breast and other cancers. Mitochondrion. 2022;66:74–81.
Article CAS PubMed Google Scholar
Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet. 2023;24(12):816–33.
Article CAS PubMed PubMed Central Google Scholar
Ashida N, SenBanerjee S, Kodama S, Foo SY, Coggins M, Spencer JA, Zamiri P, Shen D, Li L, Sciuto T. IKKβ regulates essential functions of the vascular endothelium through kinase-dependent and-independent pathways. Nat Commun. 2011;2(1):318.
Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R. Embryonic stem cell–specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet. 2008;40(12):1478–83.
Article CAS PubMed PubMed Central Google Scholar
X. Sun, S. He, A. Wara, Systemic delivery of microRNA-181b inhibits NF-kB activation, vascular inflammation, and atherosclerosis in ApoE−/− mice, Circ Res 10 (2013). https://doi.org/10.1161/CIRCRESAHA.113.302089.
Fagerlund R, Melén K, Cao X, Julkunen I. NF-κB p52, RelB and c-Rel are transported into the nucleus via a subset of importin α molecules. Cell Signal. 2008;20(8):1442–51.
Article CAS PubMed Google Scholar
M. Köhler, C. Speck, M. Christiansen, F.R. Bischoff, S. Prehn, H. Haller, D. Görlich, E. Hartmann, Evidence for distinct substrate specificities of importin α family members in nuclear protein import, Molecular and cellular biology (1999). https://doi.org/10.1128/MCB.19.11.7782.
Dejana E, Taddei A, Randi AM. Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2007;1775(2):298–312.
Article CAS PubMed Google Scholar
Oettgen P. Regulation of vascular inflammation and remodeling by ETS factors. Circ Res. 2006;99(11):1159–66.
Article CAS PubMed Google Scholar
Tousoulis D, Kampoli A-M, Tentolouris Nikolaos Papageorgiou C, Stefanadis C. The role of nitric oxide on endothelial function. Current Vascular Pharmacol. 2012;10(1):4–18.
Vasa-Nicotera M, Chen H, Tucci P, Yang AL, Saintigny G, Menghini R, Mahè C, Agostini M, Knight RA, Melino G. miR-146a is modulated in human endothelial cell with aging. Atherosclerosis. 2011;217(2):326–30.
Article CAS PubMed Google Scholar
Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A, Novelli G, Melino G. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 2009;120(15):1524–32.
Article CAS PubMed Google Scholar
Li D, Yang P, Xiong Q, Song X, Yang X, Liu L, Yuan W, Rui Y-C. MicroRNA-125a/b-5p inhibits endothelin-1 expression in vascular endothelial cells. J Hypertens. 2010;28(8):1646–54.
Article CAS PubMed Google Scholar
Mensà E, Guescini M, Giuliani A, Bacalini MG, Ramini D, Corleone G, Ferracin M, Fulgenzi G, Graciotti L, Prattichizzo F. Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells. J Extracell Vesicles. 2020;9(1):1725285.
Article PubMed PubMed Central Google Scholar
Huang F, Fang Z-F, Hu X-Q, Tang L, Zhou S-H, Huang J-P. Overexpression of miR-126 promotes the differentiation of mesenchymal stem cells toward endothelial cells via activation of PI3K/Akt and MAPK/ERK pathways and release of paracrine factors. Biol Chem. 2013;394(9):1223–33.
Article CAS PubMed Google Scholar
H. Bu, S. Wedel, M. Cavinato, P. Jansen-Dürr, MicroRNA regulation of oxidative stress-induced cellular senescence, Oxidative medicine and cellular longevity 2017 (2017). https://doi.org/10.1155/2017/2398696.
Tréguer K, Heinrich E-M, Ohtani K, Bonauer A, Dimmeler S. Role of the microRNA-17–92 cluster in the endothelial differentiation of stem cells. J Vasc Res. 2012;49(5):447–60.
Margariti A, Winkler B, Karamariti E, Zampetaki A, Tsai T-N, Baban D, Ragoussis J, Huang Y, Han J-DJ, Zeng L. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc Natl Acad Sci. 2012;109(34):13793–8.
Article CAS PubMed PubMed Central Google Scholar
Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H, Hristov M. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014;20(4):368–76.
Article CAS PubMed PubMed Central Google Scholar
Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 2008;79(4):581–8.
Article CAS PubMed Google Scholar
Huang X, Yue Z, Wu J, Chen J, Wang S, Wu J, Ren L, Zhang A, Deng P, Wang K, Wu C, Ding X, Ye P, Xia J. MicroRNA-21 Knockout Exacerbates Angiotensin II-Induced Thoracic Aortic Aneurysm and Dissection in Mice With Abnormal Transforming Growth Factor-β-SMAD3 Signaling. Arterioscler Thromb Vasc Biol. 2018;38(5):1086–101.
Article CAS PubMed Google Scholar
Wang D, Deuse T, Stubbendorff M, Chernogubova E, Erben RG, Eken SM, Jin H, Li Y, Busch A, Heeger CH, Behnisch B, Reichenspurner H, Robbins RC, Spin JM, Tsao PS, Schrepfer S, Maegdefessel L. Local MicroRNA Modulation Using a Novel Anti-miR-21-Eluting Stent Effectively Prevents Experimental In-Stent Restenosis. Arterioscler Thromb Vasc Biol. 2015;35(9):1945–53.
Comments (0)