Employment of pqqE gene as molecular marker for the traceability of Gram negative phosphate solubilizing bacteria associated to plants

Achouak W, Thiéry JM, Roubaud P, Heulin T (2000) Impact of crop management on intraespecific diversity of Pseudomonas corrugata in bulk soil. FEMS Microbiol Ecol 31:11–19. https://doi.org/10.1111/j.1574-6941.2000.tb00666.x

Article  CAS  PubMed  Google Scholar 

Alaylar B, Güllüce M, Karadayý G, Karadayý M (2018) Isolation of PGPR strains with phosphate solubilizing activity from Erzurum and their molecular evaluation by using newly designed specific primer for pqqB gene. Int J Sci Eng Res 9:103–106

Google Scholar 

Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971

Article  PubMed  PubMed Central  Google Scholar 

Anzuay MS, Frola O, Angelini JG, Ludueña LM, Fabra A, Taurian T (2013) Genetic diversity of phosphate solubilizing peanut (Arachis hypogaea L.) associated bacteria and mechanisms involved in this ability. Symbiosis 60:143–154. https://doi.org/10.1007/s13199-013-0250-2

Article  CAS  Google Scholar 

Anzuay MS, Frola O, Angelini JG, Ludueña LM, Ibañez F, Fabra A, Taurian T (2015) Effect of pesticides application on peanut (Arachis hypogaea L.) associated phosphate solubilizing soil bacteria. Appl Soil Ecol 95:31–37. https://doi.org/10.1016/j.apsoil.2015.05.003

Article  Google Scholar 

Anzuay MS, Prenollio A, Ludueña LM, Morla FD, Cerliani C, Lucero C, Angelini JG, Taurian T (2023) Enterobacter sp. J49: a native plant growth promoting Bacteria as alternative to the application of Chemical fertilizers on peanut and maize crops. Curr Microbiol 80:85. https://doi.org/10.1007/s00284-023-03181-8

Article  CAS  PubMed  Google Scholar 

Anzuay MS, Ruíz Ciancio MG, Ludueña LM, Angelini JG, Barros G, Pastor N, Taurian T (2017) Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides. Microbiol Res 199:98–109. https://doi.org/10.1016/j.micres.2017.03.006

Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

Article  PubMed  PubMed Central  Google Scholar 

Bagdasarian M, Lurz R, Rückert B, Franklin FC, Bagdasarian MM, Frey J, Timmis KN (1981) Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host vector system for gene cloning in Pseudomonas. Gene 16:237–247. https://doi.org/10.1016/0378-1119(81)90080-9

Article  CAS  PubMed  Google Scholar 

Ben Farhat M, Farhat A, Bejar W, Kammoun R, Bouchaala K, Fourati A, Antoun H, Bejar S, Chouayekh H (2009) Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Arch Microbiol 191:815–824. https://doi.org/10.1007/s00203-009-0513-8

Article  CAS  PubMed  Google Scholar 

Ben Farhat M, Fourati A, Chouayekh H (2013) Coexpression of the pyrroloquinolinequinone and glucose dehydrogenase genes from Serratia marcescens CTM 50650 conferred high mineral phosphate-solubilizing ability to Escherichia coli. Appl Biochem Biotechnol 170:1738–1750. https://doi.org/10.1007/s12010-013-0305-0

Article  CAS  PubMed  Google Scholar 

Bergmann DJ, Hooper AB, Klotz MG (2005) Structure and sequence conservation of Hao Cluster genes of autotrophic Ammonia-oxidizing Bacteria: evidence for their evolutionary history. Appl Environ Microbiol 71:5371–5382. https://doi.org/10.1128/AEM.71.9.5371-5382.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198. https://doi.org/10.1099/00221287-84-1-188

Article  CAS  PubMed  Google Scholar 

Breuillin-Sessoms F, Venterea RT, Sadowsky MJ, Coulter JA, Clough TJ, Wang P (2017) Nitrification gene ratio and free ammonia explain nitrite and nitrous oxide production in urea-amended soils. Soil Biol Biochem 111:143–153. https://doi.org/10.1016/j.soilbio.2017.04.007

Article  CAS  Google Scholar 

Chen YP, Rekha PD, Arun AB, Shen FT, Lai W, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41. https://doi.org/10.1016/j.apsoil.2005.12.002

Article  Google Scholar 

Choi O, Kim J, Kim J-G, Jeong Y, Moon JS, Park CS, Hwang I (2008) Pyrroloquinolinequinone is a plant growth factor produced by Pseudomonas fluorescens B16. Plant Physiol 146:657–668. https://doi.org/10.1104/pp.107.112748

Article  CAS  PubMed  PubMed Central  Google Scholar 

Compant S, Clément C, Sessitsch A (2010) Plant growth promoting bacteria in the rhizo and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

Article  CAS  Google Scholar 

Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394. https://doi.org/10.1016/j.micres.2004.08.004

Din ARJM, Rosli MA, Azam ZM, Othman NZ, Sarmidi MR (2020) Paenibacillus polymyxa role involved in phosphate solubilization and growth promotion of Zea mays under abiotic stress condition. Proc. Natl. Acad. Sci. U.S.A. 90: 63–71. https://doi.org/10.1007/s40011-019-01081-1

Din M, Nelofer R, Salman M, Abdullah Khan FH, Khan A, Khan M (2019) Production of nitrogen fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus. Biotechnol. Rep. 22: e00323. https://doi.org/10.1016/j.btre.2019.e00323

Fan XY, Lin F, Yang LM, Zhong XJ, Wang MH, Zhou JC, Chen YM, Yang YS (2018) Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem. Biol Fertil Soils 54:149–161. https://doi.org/10.1007/s00374-017-1251-8

Article  CAS  Google Scholar 

Food and Agriculture Organization of the United Nations (2020) State of knowledge of soil biodiversity. Status, challenges and potentialities, Report 2020. Rome, FAO, Organization of the United Nations 2020, pp. 618

Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotech 76:1145–1152. https://doi.org/10.1007/s00253-007-1077-7

Article  CAS  Google Scholar 

Gaby JC, Buckley DH (2017) The use of degenerate primers in qPCR analysis of functional genes can cause dramatic quantification bias as revealed by investigation of nifH primer performance. Microb Ecol 74:701–708. https://doi.org/10.1007/s00248-017-0968-0

Article  CAS  PubMed  Google Scholar 

Geels FP, Schippers B (1983) Reduction of yield depressions in high frequency potato cropping soil after seed tuber treatments with antagonistic fluorescent Pseudomonas spp. Phytopathol Z 108:207–214. https://doi.org/10.1111/j.1439-0434.1983.tb00580.x

Article  Google Scholar 

Glaser B, Lehr VI (2019) Biochar effects on phosphorus availability in agricultural soils: a meta-analysis. Sci Rep 27:1–9. https://doi.org/10.1038/s41598-019-45693-z

Article  CAS  Google Scholar 

Gómez-Lama Cabanás C, Legarda G, Ruano-Rosa D, Pizarro-Tobías P, Valverde-Corredor A, Niqui JL, Triviño JC, Roca A, Mercado-Blanco J (2018) Indigenous Pseudomonas Spp. Strains from the Olive (Olea europaea L.) Rhizosphere as Effective Biocontrol agents against Verticillium Dahliae: from the host roots to the bacterial genomes. Front Microbiol 9:277. https://doi.org/10.3389/fmicb.2018.00277

Article  PubMed  PubMed Central  Google Scholar 

Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 56:73–79. https://doi.org/10.1007/s00284-007-9042-3

Article  CAS  PubMed  Google Scholar 

Hajjam Y, Cherkaoui S (2017) The influence of phosphate solubilizing microorganisms on symbiotic nitrogen fixation: perspectives for sustainable agriculture. J Mater Environ Sci 8:801–808

CAS  Google Scholar 

Hall TA (1999) BioEdit: a user-friendly Biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

CAS  Google Scholar 

Han SH, Kim CH, Lee JH, Park JY, Cho SM, Park SK, Kim KY, Krishnan HB, Kim YC (2008) Inactivation of pqq genes of Enterobacter intermedium 60-2G reduces antifungal activity and induction of systemic resistance. FEMS Microbiol Lett 282:140–146. https://doi.org/10.1111/j.1574-6968.2008.01120.x

Article  CAS  PubMed  Google Scholar 

Hernandez-Forte I, Almeida-Leite R, Napoles-Garcia MC (2021) Diazotrofía De Rizobios asociados a plantas de arroz cv. INCA LP-5 e INCA LP-7. Cultrop 42:e06. https://www.redalyc.org/articulo.oa?id=193268883006

Google Scholar 

Hoagland D, Arnon DI (1950) Water culture method for growing plants without soil, vol 347. California Agricultural Experiment Station Circular

Humann JL, Ziemkiewicz HT, Yurgel SN, Kahn ML (2009) Regulatory and DNA repair genes contribute to the desiccation resistance of Sinorhizobium meliloti Rm1021. Appl Environ Microb 75:446–453. https://doi.org/10.1128/AEM.02207-08

Article  CAS 

Comments (0)

No login
gif