Adaptative responses of Neurospora crassa by histidine kinases upon the attack of the arthropod Sinella curviseta

Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118. https://doi.org/10.1016/j.tim.2005.01.007

Article  CAS  PubMed  Google Scholar 

Aimanianda V, Clavaud C, Simenel C, Fontaine T, Delepierre M, Latgé JP (2009) Cell wall beta-(1,6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis. J Biol Chem 284(20):13401–13412. https://doi.org/10.1074/jbc.M807667200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amare MG, Keller NP (2014) Molecular mechanisms of aspergillus flavus secondary metabolism and development. Fungal Genet Biol 66:11–18. https://doi.org/10.1016/j.fgb.2014.02.008

Article  CAS  PubMed  Google Scholar 

Atriztán-Hernández K, Moreno-Pedraza A, Winkler R, Markow T, Herrera-Estrella A (2019) Trichoderma atroviride from predator to prey: role of the mitogen-activated protein kinase Tmk3 in fungal chemical defense against fungivory by Drosophila melanogaster larvae. Appl Environ Microbiol 85:e01825–e01818. https://doi.org/10.1128/AEM.01825-18

Article  PubMed  PubMed Central  Google Scholar 

Banno S, Noguchi R, Yamashita K, Fukumori F, Kimura M, Yamaguchi I, Fujimura M (2007) Roles of putative his-to-asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora Crassa. Curr Genet 51(3):197–208. https://doi.org/10.1007/s00294-006-0116-8

Article  CAS  PubMed  Google Scholar 

Barba-Ostria C, Lledías F, Georgellis D (2011) The Neurospora crassa DCC-1 protein, a putative histidine kinase, is required for normal sexual and asexual development and carotenogenesis. Eukaryot Cell 10(12):1733–1739. https://doi.org/10.1128/EC.05223-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belden WJ, Larrondo LF, Froehlich AC, Shi M, Chen CH, Loros JJ, Dunlap JC (2007) The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output. Genes Dev 21(12): 1494–1505. https://doi.org/10.1101/gad.1551707

Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R (2005) The aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15(20):1833–1838. https://doi.org/10.1016/j.cub.2005.08.061

Article  CAS  PubMed  Google Scholar 

Böcking T, Barrow KD, Netting AG, Chilcott TC, Coster HG, Höfer M (2000) Effects of singlet oxygen on membrane sterols in the yeast Saccharomyces cerevisiae. Eur J Biochem 267(6):1607–1618. https://doi.org/10.1046/j.1432-1327.2000.01179.x

Article  PubMed  Google Scholar 

Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O’Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68(1):1–108. https://doi.org/10.1128/MMBR.68.1.1-108.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown AJP, Cowen LE, di Pietro A, Quinn J (2017) Stress adaptation. Microbiol Spectr 5(4): https://doi.org/10.1128/microbiolspec.FUNK-0048-2016

Cano-Domínguez N, Bowman B, Peraza-Reyes L, Aguirre J (2019) Neurospora crassa NADPH oxidase NOX-1 is localized in the vacuolar system and the plasma membrane. Front Microbiol 10:1825. https://doi.org/10.3389/fmicb.2019.01825

Article  PubMed  PubMed Central  Google Scholar 

Carreras-Villaseñor N, Sánchez-Arreguín JA, Herrera-Estrella AH (2012) Trichoderma: sensing the environment for survival and dispersal. Microbiology 158(Pt 1):3–16. https://doi.org/10.1099/mic.0.052688-0

Article  CAS  PubMed  Google Scholar 

Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 61151–1161. https://doi.org/10.1128/EC.2.6.1151-1161.2003

Cheah IK, Halliwell B (2012) Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim Biophys Acta 1822(5): 784 – 93. https://doi.org/10.1016/j.bbadis.2011.09.017

D’Souza CA, Heitman J (2001) Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25(3):349–364. https://doi.org/10.1111/j.1574-6976.2001.tb00582.x

Article  PubMed  Google Scholar 

Dighton J (2016) Fungi in ecosystem processes, 2nd edn. CRC, Boca Raton, FL

Book  Google Scholar 

Döll K, Chatterjee S, Scheu S, Karlovsky P, Rohlfs M (2013) Fungal metabolic plasticity and sexual development mediate induced resistance to arthropod fungivory. Proc Biol Sci 280(1771):20131219. https://doi.org/10.1098/rspb.2013.1219

Article  PubMed  PubMed Central  Google Scholar 

Dyer PS, O’Gorman CM (2012) Sexual development and cryptic sexuality in fungi: insights from aspergillus species. FEMS Microbiol Rev 36(1):165–192. https://doi.org/10.1111/j.1574-6976.2011.00308.x

Article  CAS  PubMed  Google Scholar 

Franzoni F, Colognato R, Galetta F, Laurenza I, Barsotti M, Di Stefano R, Bocchetti R, Regoli F, Carpi A, Balbarini A, Migliore L, Santoro G (2006) An in vitro study on the free radical scavenging capacity of ergothioneine: comparison with reduced glutathione, uric acid and trolox. Biomed Pharmacother 60(8):453–457. https://doi.org/10.1016/j.biopha.2006.07.015

Article  CAS  PubMed  Google Scholar 

Froehlich AC, Noh B, Vierstra RD, Loros J, Dunlap JC (2005) Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora Crassa. Eukaryot Cell 4(12):2140–2152. https://doi.org/10.1128/EC.4.12.2140-2152.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gil-Ramírez A, Smiderle FR, Morales D, Iacomini M, Soler-Rivas C (2019) Strengths and weaknesses of the aniline-blue method used to test mushroom (1→3)-β-d-glucans obtained by microwave-assisted extractions. Carbohydr Polym 217:135–143. https://doi.org/10.1016/j.carbpol.2019.04.051

Article  CAS  PubMed  Google Scholar 

Gladfelter AS, James TY, Amend AS (2019) Marine fungi. Curr Biol 29(6): R191-R195. https://doi.org/10.1016/j.cub.2019.02.009

González-Rubio G, Fernández-Acero T, Martín H, Molina M (2019) Mitogen-activated protein kinase phosphatases (MKPs) in fungal signaling: conservation, function, and regulation. Int J Mol Sci 20(7):1709. https://doi.org/10.3390/ijms20071709

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo Y, Ma H, Huang Q (2022) Yeast β-glucan with different degrees of oxidation: capability of adsorbing lead ions and protective effect against lead-induced PC12 cytotoxicity. Int J Biol Macromol 208:1063–1071. https://doi.org/10.1016/j.ijbiomac.2022.03.210

Article  CAS  PubMed  Google Scholar 

Gyöngyösi N, Káldi K (2014) Interconnections of reactive oxygen species homeostasis and circadian rhythm in Neurospora Crassa. Antioxid Redox Signal 20(18):3007–3023. https://doi.org/10.1089/ars.2013.5558

Article  CAS  PubMed  Google Scholar 

Hagiwara D, Takahashi-Nakaguchi A, Toyotome T, Yoshimi A, Abe K, Kamei K, Gonoi T, Kawamoto S (2013) NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in aspergillus fumigatus. PLoS ONE 8(12):e80881. https://doi.org/10.1371/journal.pone.0080881

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hérivaux A, So YS, Gastebois A, Latgé JP, Bouchara JP, Bahn YS, Papon N (2016) Major sensing proteins in pathogenic fungi: the hybrid histidine kinase family. PLoS Pathog 12(7):e1005683. https://doi.org/10.1371/journal.ppat.1005683

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernandez-Onate MA, Esquivel-Naranjo EU, Mendoza-Mendoza A, Stewart A, Herrera-Estrella AH (2012) An injury-response mechanism conserved across kingdoms determines entry of the fungus Trichoderma atroviride into development. Proc Natl Acad Sci USA 109:14918–14923. https://doi.org/10.1073/pnas.1209396109

Article  PubMed  PubMed Central  Google Scholar 

Hornero-Méndez D, Limón MC, Avalos J (2018) HPLC analysis of carotenoids in neurosporaxanthin-producing fungi. Methods Mol Biol 1852:269–281. https://doi.org/10.1007/978-1-4939-8742-9_16

Article  CAS  PubMed 

Comments (0)

No login
gif