Bakshi R, Prakash T, Dash D, Brahmachari V (2004) In silico characterization of the INO80 subfamily of SWI2/SNF2 chromatin remodeling proteins. Biochem Biophys Res Commun 320:197–204. https://doi.org/10.1016/j.bbrc.2004.05.147
Article CAS PubMed Google Scholar
Bakshi R, Mehta AK, Sharma R, Maiti S, Pasha S, Brahmachari V (2006) Characterization of a human SWI2/SNF2 like protein hINO80: demonstration of catalytic and DNA binding activity. Biochem Biophys Res Commun 339:313–320. https://doi.org/10.1016/j.bbrc.2005.10.206
Article CAS PubMed Google Scholar
Bao Y, Shen X (2007) INO80 subfamily of chromatin remodeling complexes. Mutat Res 618:18–29. https://doi.org/10.1016/j.mrfmmm.2006.10.006
Article CAS PubMed PubMed Central Google Scholar
Biegel JA, Busse TM, Weissman BE (2014) SWI/SNF chromatin remodeling complexes and cancer. Am J Med Genet 166C:350–366. https://doi.org/10.1002/ajmg.c.31410
Article CAS PubMed Google Scholar
Brahma S, Ngubo M, Paul S, Udugama M, Bartholomew B (2018) The Arp8 and Arp4 module acts as a DNA sensor controlling INO80 chromatin remodeling. Nat Commun 9:3309. https://doi.org/10.1038/s41467-018-05710-7
Article CAS PubMed PubMed Central Google Scholar
Cairns BR, Lorch Y, Li Y, Zhang M, Lacomis L, Erdjument-Bromage H, Tempst P, Du J, Laurent B, Kornberg RD (1996) RSC, an essential, abundant chromatin-remodeling complex. Cell 87:1249–1260. https://doi.org/10.1016/s0092-8674(00)81820-6
Article CAS PubMed Google Scholar
Chou KY, Lee JY, Kim KB, Kim E, Lee HS, Ryu HY (2023) Histone modification in Saccharomyces cerevisiae: a review of the current status. Comput Struct Biotechnol J 21:1843–1850. https://doi.org/10.1016/j.csbj.2023.02.037
Article CAS PubMed PubMed Central Google Scholar
Clapier CR, Iwasa J, Cairns BR, Peterson CL (2017) Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol 18:407–422. https://doi.org/10.1038/nrm.2017.26
Article CAS PubMed PubMed Central Google Scholar
Cosma MP, Tanaka T, Nasmyth K (1999) Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97:299–311. https://doi.org/10.1016/s0092-8674(00)80740-0
Article CAS PubMed Google Scholar
Dietz M, Heyken WT, Hoppen J, Geburtig S, Schüller HJ (2003) TFIIB and subunits of the SAGA complex are involved in transcriptional activation of phospholipid biosynthetic genes by the regulatory protein Ino2 in the yeast Saccharomyces cerevisiae. Mol Microbiol 48:1119–1130. https://doi.org/10.1046/j.1365-2958.2003.03501.x
Article CAS PubMed Google Scholar
Ebbert R, Birkmann A, Schüller HJ (1999) The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol Microbiol 32:741–751. https://doi.org/10.1046/j.1365-2958.1999.01390.x
Article CAS PubMed Google Scholar
Engelhardt M, Hintze S, Wendegatz EC, Lettow J, Schüller HJ (2023) Ino2, activator of yeast phospholipid biosynthetic genes, interacts with basal transcription factors TFIIA and Bdf1. Curr Genet 69:289–300. https://doi.org/10.1007/s00294-023-01277-z
Article CAS PubMed PubMed Central Google Scholar
Erijman A, Kozlowski L, Sohrabi-Jahromi S, Fishburn J, Warfield L, Schreiber J, Noble WS, Söding J, Hahn S (2020) A high-throughput screen for transcription activation domains reveals their sequence features and permits prediction by deep learning. Mol Cell 78:890–902. https://doi.org/10.1016/j.molcel.2020.04.020
Article CAS PubMed PubMed Central Google Scholar
Eustermann S, Patel AB, Hopfner KP, He Y, Korber P (2024) Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 25:309–332. https://doi.org/10.1038/s41580-023-00683-y
Article CAS PubMed Google Scholar
Ford J, Odeyale O, Eskandar A, Kouba N, Shen CH (2007) A SWI/SNF- and INO80-dependent nucleosome movement at the INO1 promoter. Biochem Biophys Res Commun 361:974–979. https://doi.org/10.1016/j.bbrc.2007.07.109
Article CAS PubMed PubMed Central Google Scholar
Ford J, Odeyale O, Shen CH (2008) Activator-dependent recruitment of SWI/SNF and INO80 during INO1 activation. Biochem Biophys Res Commun 373:602–606. https://doi.org/10.1016/j.bbrc.2008.06.079
Article CAS PubMed PubMed Central Google Scholar
Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534. https://doi.org/10.1016/0378-1119(88)90185-0
Article CAS PubMed Google Scholar
Hahn S (2018) Phase separation, protein disorder, and enhancer function. Cell 175:1723–1725. https://doi.org/10.1016/j.cell.2018.11.034
Article CAS PubMed Google Scholar
Han Y, Reyes AA, Malik S, He Y (2020) Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature 579:452–455. https://doi.org/10.1038/s41586-020-2087-1
Article CAS PubMed PubMed Central Google Scholar
Hartley PD, Madhani HD (2009) Mechanisms that specify promoter nucleosome location and identity. Cell 137:445–458. https://doi.org/10.1016/j.cell.2009.02.043
Article CAS PubMed PubMed Central Google Scholar
Hassan AH, Awad S, Al-Natour Z, Othman S, Mustafa F, Rizvi TA (2007) Selective recognition of acetylated histones by bromodomains in transcriptional co-activators. Biochem J 402:125–133. https://doi.org/10.1042/BJ20060907
Article CAS PubMed PubMed Central Google Scholar
Hintze S, Engelhardt M, van Diepen L, Witt E, Schüller HJ (2017) Multiple Taf subunits of TFIID interact with Ino2 activation domains and contribute to expression of genes required for yeast phospholipid biosynthesis. Mol Microbiol 106:876–890. https://doi.org/10.1111/mmi.13850
Article CAS PubMed Google Scholar
Hsieh LJ, Gourdet MA, Moore CM, Muñoz EN, Gamarra N, Ramani V, Narlikar GJ (2022) A hexasome is the preferred substrate for the INO80 chromatin remodeling complex, allowing versatility of function. Mol Cell 82:2098–2112. https://doi.org/10.1016/j.molcel.2022.04.026
Article CAS PubMed PubMed Central Google Scholar
Hu Z, Chen K, Li W, Tyler JK (2014) A matter of access. Nucleosome disassembly from gene promoters is the central goal of transcriptional activators. Transcription 5:e29355. https://doi.org/10.4161/trns.29355
Article PubMed PubMed Central Google Scholar
Imai Y, Matsushima Y, Sugimura T, Terada M (1991) A simple and rapid method for generating a deletion by PCR. Nucleic Acids Res 19:2785. https://doi.org/10.1093/nar/19.10.2785
Article CAS PubMed PubMed Central Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2
Comments (0)