Bourdichon F, Patrone V, Fontana A, Milani G, Morelli L (2021) Safety demonstration of a microbial species for use in the food chain: Weissella confusa. Int J Food Microbiol 339:109028. https://doi.org/10.1016/j.ijfoodmicro.2020.109028
Article CAS PubMed Google Scholar
Buttress JA, Halte M, te Winkel JD, Erhardt M, Popp PF, Strahl H (2022) A guide for membrane potential measurements in Gram-negative bacteria using voltage-sensitive dyes. Microbiol (Reading, England) 168:001227. https://doi.org/10.1099/mic.0.001227
Cotter PD, Ross RP, Hill C (2013) Bacteriocins- A viable alternative to antibiotics? Nat Rev Microbiol 11:95–105. https://doi.org/10.1038/nrmicro2937
Article CAS PubMed Google Scholar
Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X (2021) Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: a review. Compr Rev Food Sci Food Saf 20:863–899. https://doi.org/10.1111/1541-4337.12658
Article CAS PubMed Google Scholar
Cupi D, Elvig-Jørgensen SG (2019) Safety assessment of Weissella confusa-A direct-fed microbial candidate. Regulat Toxicol Pharmacol 107:104414. https://doi.org/10.1016/j.yrtph.2019.104414
Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, Darb Emamie A, Ghanavati R, Kakanj M (2022) Bacteriocins: properties and potential use as antimicrobials. J Clin Lab Anal 36:e24093. https://doi.org/10.1002/jcla.24093
Article CAS PubMed Google Scholar
Deng Z, Hou K, Zhao J, Wang H (2022) The probiotic properties of lactic acid bacteria and their applications in animal husbandry. Curr Microbiol 79:22. https://doi.org/10.1007/s00284-021-02722-3
Du H, Zhou L, Lu Z, Bie X, Zhao H, Niu YD, Lu F (2020) Transcriptomic and proteomic profiling response of methicillin-resistant Staphylococcus aureus (MRSA) to a novel bacteriocin, plantaricin GZ1-27 and its inhibition of biofilm formation. Appl Microbiol Biotechnol 104:7957–7970. https://doi.org/10.1007/s00253-020-10589-w
Article CAS PubMed Google Scholar
Du R, Ping W, Ge J (2022) Purification, characterization and mechanism of action of enterocin HDX-2, a novel class IIa bacteriocin produced by Enterococcus faecium HDX-2. LWT 153:112451. https://doi.org/10.1016/j.lwt.2021.112451
Duan F, Xin G, Niu H, Huang W (2017) Chlorinated emodin as a natural antibacterial agent against drug-resistant bacteria through dual influence on bacterial cell membranes and DNA. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-12905-3
Elsilk SE, Azab EA, Tahwash AM (2015) Bacteriocins-like substances produced by Enterococcus sanguinicola isolated from traditional Egyptain food Sires (Chicorium pumilum). JSM Microbiol 3:1018
Fanelli F, Montemurro M, Verni M, Garbetta A, Bavaro AR, Chieffi D, Cho GS, Franz CMAP, Rizzello CG, Fusco V (2023) Probiotic potential and safety assessment of type strains of Weissella and Periweissella species. Microbiol Spectr 11:e0304722. https://doi.org/10.1128/spectrum.03047-22
Article CAS PubMed Google Scholar
Fhoula I, Boumaiza M, Tayh G, Rehaiem A, Klibi N, Ouzari IH (2022) Antimicrobial activity and safety features assessment of Weissella spp. from environmental sources. Food Sci Nutr 10:2896–2910. https://doi.org/10.1002/fsn3.2885
Article CAS PubMed PubMed Central Google Scholar
Goh HF, Philip K (2015) Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. PLoS ONE 10:e0140434. https://doi.org/10.1371/journal.pone.0140434
Article CAS PubMed PubMed Central Google Scholar
Gong HS, Meng XC, Wang H (2010) Mode of action of plantaricin MG, a bacteriocin active against Salmonella typhimurium. J Basic Microbiol 50:S37–S45. https://doi.org/10.1002/jobm.201000130
Huang S, Liu Y, Liu WQ, Neubauer P, Li J (2021) The Nonribosomal peptide valinomycin: from discovery to bioactivity and biosynthesis. Microorganisms 9:780. https://doi.org/10.3390/microorganisms9040780
Article CAS PubMed PubMed Central Google Scholar
Huang T, Li Z, Qu X, Yao G, Kwok LY, He Q, Zhang H (2024) Preliminary purification and partial characterization of a functional bacteriocin of Lacticaseibacillus paracasei Zhang and mining for its gene cluster. Probiotics Antimicro Prot. https://doi.org/10.1007/s12602-024-10249-9
Ibrahim SA, Ayivi RD, Zimmerman T, Siddiqui SA, Altemimi AB, Fidan H, Esatbeyoglu T, Bakhshayesh RV (2021) Lactic acid bacteria as antimicrobial agents: food safety and microbial food spoilage prevention. Foods 10:3131. https://doi.org/10.3390/foods10123131
Article CAS PubMed PubMed Central Google Scholar
Jiang Y, Mei C, Huang X, Gu Q, Song D (2020) Antibacterial activity and mechanism of a bacteriocin derived from the valine-cecropin a (1–8)-plantaricin zj5 (1–18) hybrid peptide against Escherichia coli O104. Food Biophys 15:442–451. https://doi.org/10.1007/s11483-020-09636-w
Johnson MB, Criss AK (2013) Fluorescence microscopy methods for determining the viability of bacteria in association with mammalian cells. J Vis Exp 79:e50729. https://doi.org/10.3791/50729
Kaur R, Tiwari SK (2016) Isolation, identification and characterization of Pediococcus pentosaceus LB44 and Weissella confusa LM85 for the presence of bacteriocin-like inhibitory substances (BLIS). Microbiology 85:540–547. https://doi.org/10.1134/S0026261716050088
Kaur R, Tiwari SK (2017) Optimization of culture conditions for bacteriocin production by soil isolates Pediococcus pentosaceus LB44 and Weissella confusa LM85. Int J Infect 4:e15842. https://doi.org/10.5812/iji.15842
Kim E, Yang SM, Kim HY (2023) Weissella and the two Janus faces of the genus. Appl Microbiol Biotechnol 107:1119–1127. https://doi.org/10.1007/s00253-023-12387-6
Article CAS PubMed Google Scholar
Kumar V, Sheoran P, Gupta A, Yadav JP, Tiwari SK (2016) Antibacterial property of bacteriocin produced by Lactobacillus plantarum LD4 isolated from a fermented food. Ann Microbiol 66:1431–1440. https://doi.org/10.1007/s13213-016-1230-6
Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S (2019) Bacteriocins: classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog 128:171–177. https://doi.org/10.1016/j.micpath.2019.01.002
Article CAS PubMed Google Scholar
Lakra AK, Domdi L, Hanjon G, Tilwani YM, Arul V (2020) Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter. LWT 125:109261. https://doi.org/10.1016/j.lwt.2020.109261
Leversee JA, Glatz BA (2001) Detection of the bacteriocin propionicin PLG-1 with polyvalent anti-PLG-1 antiserum. Appl Environ Microbiol 67:2235–2239. https://doi.org/10.1128/AEM.67.5.2235-2239.2001
Article CAS PubMed PubMed Central Google Scholar
Masuda Y, Zendo T, Sawa N, Perez RH, Nakayama J, Sonomoto K (2012) Characterization and identification of weissellicin Y and weissellicin M, novel bacteriocins produced by Weissella hellenica QU 13. J Appl Microbiol 112:99–108. https://doi.org/10.1111/j.1365-2672.2011.05180.x
Article CAS PubMed Google Scholar
Miao J, Liu G, Ke C, Fan W, Li C, Chen Y, Dixon W, Song M, Cao Y, Xiao H (2016) Inhibitory effects of a novel antimicrobial peptide from kefir against Escherichia coli. Food Control 65:63–72. https://doi.org/10.1016/j.foodcont.2016.01.023
Onur M, Onlu H (2024) Isolation, characterization of Weissella confusa and Lactococcus lactis from different milk sources and determination of probiotic features. Braz J Microbiol 55:663–679. https://doi.org/10.1007/s42770-023-01208-7
Comments (0)