Goldenberg, M.M. 2012. Multiple sclerosis review. Pharmacy and Therapeutics 37 (3): 175.
PubMed PubMed Central Google Scholar
Lassmann, H., and M. Bradl. 2017. Multiple sclerosis: Experimental models and reality. Acta neuropathologica. 133: 223–244.
Article CAS PubMed Google Scholar
Henderson, A.P., M.H. Barnett, J.D. Parratt, and J.W. Prineas. 2009. Multiple sclerosis: Distribution of inflammatory cells in newly forming lesions. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 66 (6): 739–753.
Lassmann, H., W. Brück, and C.F. Lucchinetti. 2007. The immunopathology of multiple sclerosis: An overview. Brain Pathology 17 (2): 210–218.
Article PubMed PubMed Central Google Scholar
Lassmann, H. 2018. Multiple sclerosis pathology. Cold Spring Harbor Perspectives in Medicine 8 (3): a028936.
Article PubMed PubMed Central Google Scholar
Jadidi-Niaragh, F., and A. Mirshafiey. 2011. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scandinavian Journal of Immunology 74 (1): 1–13.
Article CAS PubMed Google Scholar
Arellano, G., E. Acuña, L.I. Reyes, P.A. Ottum, P. De Sarno, L. Villarroel, et al. 2017. Th1 and Th17 cells and associated cytokines discriminate among clinically isolated syndrome and multiple sclerosis phenotypes. Frontiers in Immunology 8: 753.
Article PubMed PubMed Central Google Scholar
Merkler, D., T. Ernsting, M. Kerschensteiner, W. Brück, and C. Stadelmann. 2006. A new focal EAE model of cortical demyelination: Multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination. Brain 129 (8): 1972–1983.
Tavazzi, E., M. Rovaris, and L. La Mantia. 2014. Drug therapy for multiple sclerosis. CMAJ 186 (11): 833–840.
Article PubMed PubMed Central Google Scholar
Ganji, A., M.E. Monfared, S. Shapoori, P. Nourbakhsh, A. Ghazavi, K. Ghasami, et al. 2020. Effects of interferon and glatiramer acetate on cytokine patterns in multiple sclerosis patients. Cytokine 126: 154911.
Article CAS PubMed Google Scholar
Zahid, M., A. Busmail, S.S. Penumetcha, S. Ahluwalia, R. Irfan, S.A. Khan, et al. 2021. Tumor necrosis factor alpha blockade and multiple sclerosis: exploring new avenues. Cureus 13 (10): e18847.
PubMed PubMed Central Google Scholar
Peerlings, D., M. Mimpen, and J. Damoiseaux. 2021. The IL-2–IL-2 receptor pathway: Key to understanding multiple sclerosis. Journal of Translational Autoimmunity 4: 100123.
Article CAS PubMed PubMed Central Google Scholar
Grunwald, C., A. Krętowska-Grunwald, E. Adamska-Patruno, J. Kochanowicz, A. Kułakowska, and M. Chorąży. 2024. The role of selected interleukins in the development and progression of multiple sclerosis—A systematic review. International Journal of Molecular Sciences. 25 (5): 2589.
Article CAS PubMed PubMed Central Google Scholar
Stampanoni Bassi, M., E. Iezzi, J. Drulovic, T. Pekmezovic, L. Gilio, R. Furlan, et al. 2020. IL-6 in the cerebrospinal fluid signals disease activity in multiple sclerosis. Frontiers in Cellular Neuroscience. 14: 120.
Article PubMed PubMed Central Google Scholar
Wagner, C.A., P.J. Roqué, and J.M. Goverman. 2020. Pathogenic T cell cytokines in multiple sclerosis. Journal of Experimental Medicine 217 (1): e20190460.
Huseby, E.S., P.G. Huseby, S. Shah, R. Smith, and B.D. Stadinski. 2012. Pathogenic CD8 T cells in multiple sclerosis and its experimental models. Frontiers in Immunology 3: 64.
Article PubMed PubMed Central Google Scholar
Wagner, C.A., P.J. Roqué, T.R. Mileur, D. Liggitt, and J.M. Goverman. 2020. Myelin-specific CD8+ T cells exacerbate brain inflammation in CNS autoimmunity. The Journal of Clinical Investigation. 130 (1): 203–213.
Article CAS PubMed Google Scholar
Lückel, C., F. Picard, H. Raifer, L. Campos Carrascosa, A. Guralnik, Y. Zhang, et al. 2019. IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nature Communications 10 (1): 5722.
Article PubMed PubMed Central Google Scholar
Polman, C.H., S.C. Reingold, B. Banwell, M. Clanet, J.A. Cohen, M. Filippi, et al. 2011. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology. 69 (2): 292–302.
Article PubMed PubMed Central Google Scholar
Chew, L.-J., and C.A. DeBoy. 2016. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology 110: 605–625.
Article CAS PubMed Google Scholar
Zhang, Y., Z. Ning, C. Lu, S. Zhao, J. Wang, B. Liu, et al. 2013. Triterpenoid resinous metabolites from the genus Boswellia: Pharmacological activities and potential species-identifying properties. Chemistry Central Journal. 7: 1–16.
Taherzadeh, D., V. Baradaran Rahimi, H. Amiri, S. Ehtiati, R. Yahyazadeh, S.I. Hashemy, et al. 2022. Acetyl-11-Keto-β-Boswellic Acid (AKBA) Prevents Lipopolysaccharide-Induced Inflammation and Cytotoxicity on H9C2 Cells. Evidence-Based Complementary and Alternative Medicine 2022 (1): 2620710.
PubMed PubMed Central Google Scholar
Ragab, E.A., M.F. Abd El-Wahab, A.S. Doghish, R.M. Salama, N. Eissa, and S.F. Darwish. 2024. The journey of boswellic acids from synthesis to pharmacological activities. Naunyn-Schmiedeberg’s Archives of Pharmacology. 397 (3): 1477–1504.
Article CAS PubMed Google Scholar
Roy, N.K., D. Parama, K. Banik, D. Bordoloi, A.K. Devi, K.K. Thakur, et al. 2019. An update on pharmacological potential of boswellic acids against chronic diseases. International Journal of Molecular Sciences. 20 (17): 4101.
Article CAS PubMed PubMed Central Google Scholar
Nadeem, A., S.F. Ahmad, N.O. Al-Harbi, W. Sarawi, S.M. Attia, W.A. Alanazi, et al. 2022. Acetyl-11-keto-β-boswellic acid improves clinical symptoms through modulation of Nrf2 and NF-κB pathways in SJL/J mouse model of experimental autoimmune encephalomyelitis. International Immunopharmacology. 107: 108703.
Article CAS PubMed Google Scholar
Wang, Y., Z. Xiong, C. Zhou, Q. Zhang, S. Liu, S. Dong, et al. 2022. AKBA promotes axonal regeneration via RhoA/Rictor to repair damaged sciatic nerve. International Journal of Molecular Sciences. 23 (24): 15903.
Article CAS PubMed PubMed Central Google Scholar
Ahmad, S., S.A. Khan, A. Kindelin, T. Mohseni, K. Bhatia, M.N. Hoda, et al. 2019. Acetyl-11-keto-β-boswellic acid (AKBA) attenuates oxidative stress, inflammation, complement activation and cell death in brain endothelial cells following OGD/reperfusion. Neuromolecular Medicine 21 (4): 505–516.
Article CAS PubMed Google Scholar
Jahan-Abad, A.J., S. Karima, S.S. Negah, F. Noorbakhsh, M. Borhani-Haghighi, and A. Gorji. 2019. Therapeutic potential of conditioned medium derived from oligodendrocytes cultured in a self-assembling peptide nanoscaffold in experimental autoimmune encephalomyelitis. Brain Research. 1711: 226–235.
Jahan-Abad, A.J., S. Karima, S. Shateri, S.M. Baram, S. Rajaei, P. Morteza-Zadeh, et al. 2020. Serum pro-inflammatory and anti-inflammatory cytokines and the pathogenesis of experimental autoimmune encephalomyelitis. Neuropathology 40 (1): 84–92.
Article CAS PubMed Google Scholar
Li, W., L. Ren, X. Zheng, J. Liu, J. Wang, T. Ji, et al. 2020. 3-O-Acetyl-11-keto-β-boswellic acid ameliorated aberrant metabolic landscape and inhibited autophagy in glioblastoma. Acta Pharmaceutica Sinica B. 10 (2): 301–312.
Article PubMed PubMed Central Google Scholar
Ciotti, J.R., and A.H. Cross. 2018. Disease-modifying treatment in progressive multiple sclerosis. Current Treatment Options in Neurology 20: 1–26.
Comments (0)