Aladhadh M (2023) A review of modern methods for the detection of foodborne pathogens. Microorganisms 11(5):1111
Article CAS PubMed PubMed Central Google Scholar
Al-Tayyar NA, Youssef AM, Al-Hindi R (2020) Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: a review. Food Chem 310:125915. https://doi.org/10.1016/j.foodchem.2019.125915
Article CAS PubMed Google Scholar
Amos-Tautua BM, Songca SP, Oluwafemi OS (2019) Application of porphyrins in antibacterial photodynamic therapy. Molecules 24(13):2456. https://doi.org/10.3390/molecules24132456
Article CAS PubMed PubMed Central Google Scholar
Basso G, Cargnelutti JF, Oliveira AL, Acunha TV, Weiblen R, Flores EF, Iglesias BA (2019) Photodynamic inactivation of selected bovine viruses by isomeric cationic tetra-platinated porphyrins. J Porphyrins Phthalocyanines 23(09):1041–1046. https://doi.org/10.1142/S1088424619500767
Bonez PC, Rossi GG, Bandeira JR, Ramos AP, Mizdal CR, Agertt VA, de Campos MMA (2017) Anti-biofilm activity of A22 ((S-3, 4-dichlorobenzyl) isothiourea hydrochloride) against Pseudomonas aeruginosa: influence on biofilm formation, motility and bioadhesion. Microb Pathogen 111:6–13. https://doi.org/10.1016/j.micpath.2017.08.008
Buchovec I, Paskeviciute E, Luksiene Z (2010) Photodynamic inactivation of food pathogen Listeria monocytogenes. Food Technol Biotechnol 48(2):207–213
Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys. https://doi.org/10.1063/1.2408420
Carvalho CM, Gomes AT, Fernandes SC, Prata AC, Almeida MA, Cunha MA, Rocha J (2007) Photoinactivation of bacteria in wastewater by porphyrins: bacterial β-galactosidase activity and leucine-uptake as methods to monitor the process. J Photochem Photobiol B Biol 88(2–3):112–118. https://doi.org/10.1016/j.jphotobiol.2007.04.015
Clinical and Laboratory Standards Institute (CLSI) (2015) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition. CLSI document M07-A10 (ISBN 1-56238-988-2). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA.
Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322. https://doi.org/10.1126/science.284.5418.1318
Article CAS PubMed Google Scholar
da Rosa Pinheiro T, Dantas GA, da Silva JLG, Leal DBR, da Silva RB, de Lima Burgo TA, Iglesias BA (2023a) The First report of in vitro antifungal and antibiofilm photodynamic activity of tetra-cationic porphyrins containing Pt(II) complexes against candida albicans for onychomycosis treatment. Pharmaceutics 15(5):1511. https://doi.org/10.3390/pharmaceutics15051511
Article CAS PubMed PubMed Central Google Scholar
da Rosa Pinheiro T, Urquhart CG, Acunha TV, Santos RCV, Iglesias BA (2023b) Antimicrobial photodynamic in vitro inactivation of Enterococcus spp. and Staphylococcus spp. strains using tetra-cationic platinum(II) porphyrins. Photodiagn Photodyn Ther 42:103542. https://doi.org/10.1016/j.pdpdt.2023.103542
Dai T, Huang YY, Hamblin MR (2009) Photodynamic therapy for localized infectionsstate of the art. Photodiagn Photodyn Ther 6(3–4):170–188
Davis JH (1983) The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta 737:117–171. https://doi.org/10.1016/0304-4157(83)90015-1
Article CAS PubMed Google Scholar
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593. https://doi.org/10.1063/1.470117
Garcia-Diaz M, Huang YY, Hamblin MR (2016) Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods 109:158–166
Article CAS PubMed PubMed Central Google Scholar
Hess B, Bekker H, Herman JC, Johannes GEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472
Hockney RW (1970) The potenitial calculation and some applications. Methods Comput Phys 20:135
Huang J, Chen B, Li H, Zeng QH, Wang JJ, Liu H, Zhao Y (2020) Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes. Food Control 108:106886. https://doi.org/10.1016/j.foodcont.2019.106886
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5
Article CAS PubMed Google Scholar
Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865. https://doi.org/10.1002/jcc.20945
Article CAS PubMed Google Scholar
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. https://doi.org/10.1063/1.445869
Kim S, Lee J, Jo S, Brooks CL, Lee HS (2017) CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J Comput Chem. https://doi.org/10.1002/jcc.24829
Article PubMed PubMed Central Google Scholar
Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843. https://doi.org/10.1021/jp101759q
Article CAS PubMed PubMed Central Google Scholar
Kurinčič M, Jeršek B, Klančnik A et al (2016) Effects of natural antimicrobials on bacterial cell hydrophobicity, adhesion, and zeta potential. Arh Hig Rada Toksikol 67:39–45. https://doi.org/10.1515/aiht-2016-67-2720
Article CAS PubMed Google Scholar
Lee J, Cheng X, Jo S, MacKerell AD, Klauda JB (2016a) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Biophys J 110:641a
Lee J, Cheng X, Jo S, MacKerell AD, Klauda JB, Im W (2016b) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Biophys J 110(3):641a
Leong SW, Lim TS, Ismail A, Choong YS (2018) Integration of molecular dynamics simulation and hotspot residues grafting for de novo scFv design against Salmonella Typhi TolC protein. J Mol Recogn 31(5):e2695. https://doi.org/10.1002/jmr.2695
Lianou A, Panagou EZ, Nychas GJE (2023) Segurança da carne – patógenos de origem alimentar e outras questões biológicas. Na ciência da carne de Lawrie. Publicação Woodhead. pp 549–590. https://doi.org/10.1016/B978-0-323-85408-5.00015-7
Luksiene Z, Brovko L (2013) Antibacterial photosensitization-based treatment for food safety. Food Eng Rev 5:185–199. https://doi.org/10.1007/s12393-013-9070-7
Luksiene Z, Buchovec I, Paskeviciute E (2010) Inactivation of several strains of Listeria monocytogenes attached to the surface of packaging material by Na-Chlorophyllin-based photosensitization. J Photochem Photobiol B 101(3):326–331. https://doi.org/10.1016/j.jphotobiol.2010.08.002
Article CAS PubMed Google Scholar
MacKerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25(13):1584–1604. https://doi.org/10.1002/jcc.20082
Comments (0)