In vitro antimicrobial, antibiofilm photodynamic activity, and molecular dynamic simulations of tetra-cationic porphyrinmembrane interactions against foodborne microorganisms

Aladhadh M (2023) A review of modern methods for the detection of foodborne pathogens. Microorganisms 11(5):1111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Tayyar NA, Youssef AM, Al-Hindi R (2020) Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: a review. Food Chem 310:125915. https://doi.org/10.1016/j.foodchem.2019.125915

Article  CAS  PubMed  Google Scholar 

Amos-Tautua BM, Songca SP, Oluwafemi OS (2019) Application of porphyrins in antibacterial photodynamic therapy. Molecules 24(13):2456. https://doi.org/10.3390/molecules24132456

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basso G, Cargnelutti JF, Oliveira AL, Acunha TV, Weiblen R, Flores EF, Iglesias BA (2019) Photodynamic inactivation of selected bovine viruses by isomeric cationic tetra-platinated porphyrins. J Porphyrins Phthalocyanines 23(09):1041–1046. https://doi.org/10.1142/S1088424619500767

Article  CAS  Google Scholar 

Bonez PC, Rossi GG, Bandeira JR, Ramos AP, Mizdal CR, Agertt VA, de Campos MMA (2017) Anti-biofilm activity of A22 ((S-3, 4-dichlorobenzyl) isothiourea hydrochloride) against Pseudomonas aeruginosa: influence on biofilm formation, motility and bioadhesion. Microb Pathogen 111:6–13. https://doi.org/10.1016/j.micpath.2017.08.008

Article  CAS  Google Scholar 

Buchovec I, Paskeviciute E, Luksiene Z (2010) Photodynamic inactivation of food pathogen Listeria monocytogenes. Food Technol Biotechnol 48(2):207–213

CAS  Google Scholar 

Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys. https://doi.org/10.1063/1.2408420

Article  PubMed  Google Scholar 

Carvalho CM, Gomes AT, Fernandes SC, Prata AC, Almeida MA, Cunha MA, Rocha J (2007) Photoinactivation of bacteria in wastewater by porphyrins: bacterial β-galactosidase activity and leucine-uptake as methods to monitor the process. J Photochem Photobiol B Biol 88(2–3):112–118. https://doi.org/10.1016/j.jphotobiol.2007.04.015

Article  CAS  Google Scholar 

Clinical and Laboratory Standards Institute (CLSI) (2015) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition. CLSI document M07-A10 (ISBN 1-56238-988-2). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA.

Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322. https://doi.org/10.1126/science.284.5418.1318

Article  CAS  PubMed  Google Scholar 

da Rosa Pinheiro T, Dantas GA, da Silva JLG, Leal DBR, da Silva RB, de Lima Burgo TA, Iglesias BA (2023a) The First report of in vitro antifungal and antibiofilm photodynamic activity of tetra-cationic porphyrins containing Pt(II) complexes against candida albicans for onychomycosis treatment. Pharmaceutics 15(5):1511. https://doi.org/10.3390/pharmaceutics15051511

Article  CAS  PubMed  PubMed Central  Google Scholar 

da Rosa Pinheiro T, Urquhart CG, Acunha TV, Santos RCV, Iglesias BA (2023b) Antimicrobial photodynamic in vitro inactivation of Enterococcus spp. and Staphylococcus spp. strains using tetra-cationic platinum(II) porphyrins. Photodiagn Photodyn Ther 42:103542. https://doi.org/10.1016/j.pdpdt.2023.103542

Article  CAS  Google Scholar 

Dai T, Huang YY, Hamblin MR (2009) Photodynamic therapy for localized infectionsstate of the art. Photodiagn Photodyn Ther 6(3–4):170–188

Article  CAS  Google Scholar 

Davis JH (1983) The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta 737:117–171. https://doi.org/10.1016/0304-4157(83)90015-1

Article  CAS  PubMed  Google Scholar 

Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593. https://doi.org/10.1063/1.470117

Article  CAS  Google Scholar 

Garcia-Diaz M, Huang YY, Hamblin MR (2016) Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods 109:158–166

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hess B, Bekker H, Herman JC, Johannes GEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

Article  CAS  Google Scholar 

Hockney RW (1970) The potenitial calculation and some applications. Methods Comput Phys 20:135

Google Scholar 

Huang J, Chen B, Li H, Zeng QH, Wang JJ, Liu H, Zhao Y (2020) Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes. Food Control 108:106886. https://doi.org/10.1016/j.foodcont.2019.106886

Article  CAS  Google Scholar 

Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

Article  CAS  PubMed  Google Scholar 

Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865. https://doi.org/10.1002/jcc.20945

Article  CAS  PubMed  Google Scholar 

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. https://doi.org/10.1063/1.445869

Article  CAS  Google Scholar 

Kim S, Lee J, Jo S, Brooks CL, Lee HS (2017) CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J Comput Chem. https://doi.org/10.1002/jcc.24829

Article  PubMed  PubMed Central  Google Scholar 

Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843. https://doi.org/10.1021/jp101759q

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurinčič M, Jeršek B, Klančnik A et al (2016) Effects of natural antimicrobials on bacterial cell hydrophobicity, adhesion, and zeta potential. Arh Hig Rada Toksikol 67:39–45. https://doi.org/10.1515/aiht-2016-67-2720

Article  CAS  PubMed  Google Scholar 

Lee J, Cheng X, Jo S, MacKerell AD, Klauda JB (2016a) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Biophys J 110:641a

Article  Google Scholar 

Lee J, Cheng X, Jo S, MacKerell AD, Klauda JB, Im W (2016b) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Biophys J 110(3):641a

Article  Google Scholar 

Leong SW, Lim TS, Ismail A, Choong YS (2018) Integration of molecular dynamics simulation and hotspot residues grafting for de novo scFv design against Salmonella Typhi TolC protein. J Mol Recogn 31(5):e2695. https://doi.org/10.1002/jmr.2695

Article  CAS  Google Scholar 

Lianou A, Panagou EZ, Nychas GJE (2023) Segurança da carne – patógenos de origem alimentar e outras questões biológicas. Na ciência da carne de Lawrie. Publicação Woodhead. pp 549–590. https://doi.org/10.1016/B978-0-323-85408-5.00015-7

Luksiene Z, Brovko L (2013) Antibacterial photosensitization-based treatment for food safety. Food Eng Rev 5:185–199. https://doi.org/10.1007/s12393-013-9070-7

Article  CAS  Google Scholar 

Luksiene Z, Buchovec I, Paskeviciute E (2010) Inactivation of several strains of Listeria monocytogenes attached to the surface of packaging material by Na-Chlorophyllin-based photosensitization. J Photochem Photobiol B 101(3):326–331. https://doi.org/10.1016/j.jphotobiol.2010.08.002

Article  CAS  PubMed  Google Scholar 

MacKerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25(13):1584–1604. https://doi.org/10.1002/jcc.20082

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif